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-‘f‘ Data mining

h‘

. is "the use of sophisticated data analysis tools to discover unknown,
valid patterns and relationships in large datasets”

Data mining: gl & |l & &

@ Core of KDD S1 X X

@ Search for regularities from S2 S
transaction databases S3 X X

@ Pattern domain : item-sets, S4 X
sequences, graphs, etc. S5 X

@ examples including pattern mining, frequent pattern :
clustering, association rules, etc. association rule : — 3
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-‘f‘ Frequent itemset mining

Problem Definition

Given the objects in O described with the Boolean attributes in Z, listing
every itemset having a frequency above a given threshold 6 € N.

Input:
‘ ai a an
o1 | di1 dip ... din
0 | do1 b ... da,
. - and a minimal frequency 6 € N.
Om dm,l dm,2 «o. dmn

where d;; € {true,false}
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T Frequent itemset mining

b

Problem Definition

Given the objects in O described with the Boolean attributes in Z, listing
every itemset having a frequency above a given threshold 6 € N.

Output: every X C 7 such that there are at least 6 objects having all attributes in X.
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Pattern flooding: Mining frequent itemsets

»

A

30.0% - minsup=42

freq=

hepatitis

Frequent Patterns
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Pattern flooding: Mining top-k frequent itemsets

g

freq=30.0% - minsup=42

hepatitis

Frequent Patterns

® Top-

50 frequent Patterns
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Pattern flooding: Mining top-k frequent itemsets

g

.

hepatitis - freq=30.0% - minsup=42

» Frequent Patterns
@ Top-100 frequent Patterns
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T Redundancy

b

@ Too many patterns, unmanageable and
diversity not necessary assured

@ Find a set of patterns that is:

- small
- non-redundant

@ Several approaches for mining
non-redundant patterns :

- Mikis (Knobbe et al.,
ECML-PKDD'06)

- Piker (Bringmann et al., KIS 2009)

- Flexics (Dzyuba et al., DMKD 2017),

- CFTP (Boley et al., KDD 2012)

m Exploiting CP for mining diverse set of patterns

(@)
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T Constraint programming

b

A generic framework for solving combinatorial problems

@ A declarative description of the problem by a triplet (X,D,C) where

- X ={x1,...,%a} is finite set of variables
- D={Dx,...,Dy} is finite set of domains (a.k.a possible values) of variables
- C={ci,...,ce} is a set of constraints restricting the values of variables x;

@ Resolution = Enumeration + Filtering

solution = assignments on X satisfying all constraints of C
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n ¥,

b

Measuring redundancy

Exploiting similarity measure to compare pairs of patterns :

|A N B|/ min(|A],|B]|) (Overlap)
|AU B| — |AnN B| (Hamming distance)
|AN BJ|/|A].|B| (Cosine similarity)

|AN B|/|AU B| (Jaccard similarity)

o
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T Diversification problems

i
Definition (Hebrard et al., AAAI 2005)

Let k > 2 be an integer, and S be a set of solutions.

@ The MAXDIVERSEKSET(k) problem is the problem of finding a subset S of S of
size k such that for all S C S, |S| = k,

min_Jy(s1,5) < min_ h(s1, ).

51,9ES
51,9ES ls; ;SEZ
s172

@ Given a set S of previously found solutions (a history), the MOSTDISTANT(S)
problem is the problem of finding a solution s € S such that for all s € S,

in Jy(5,s") < min J ).
min Ju(s, ') < min Jv(s, ')

- MAXDIVERSEKSET(k) can be seen as finding a set of k solutions minimizing
the pairwise Jaccard values.

- MOSTDISTANT aims at finding the most distant solution from the history of
solution ; can be seen as a greedy algorithm solving MAXDIVERSEKSET problem.
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-‘.f First approximation of the MOSTDISTANT problem
h ‘ (Hien et al., ECML-PKDD 2020 & Constraints 2024)

Definition (Maximum Diversity Constraint)

Let H be a history of patterns, jn.x a bound on the maximum allowed Jaccard,
and P an itemset. The maximum diversity constraint ensures that P is diverse
w.r.t. H and Jyax.

A19(P, H, jmax) © YH € H, Jy(P, H) < Jmax

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse
patterns.

Task : Given a history H of k pairwise diverse patterns (initially empty), the task
is to mine new patterns P such that div(P,H, jmax) is satisfied.
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-‘_f‘ Anti-monotonicity of the maximum Jaccard constraint

The anti-monotonicity does not hold for the Maximum Jaccard constraint

Freent Clont T
Hemset (FC) SN | Nondiverse 1 | Diverse FCI

biwory =11 | 100 | Nabivene | R lorwhih | | forwhich | | Divenc FCI

teonixnt azo07y | |02 || Nomlwen |l | Usdma | | LBomax | forehich

e Tndex Immco1s [ 00 Wi L Ubmax
Jaceards LB ' 0280 ¢ 1 Jaccard > Jmax | | Jaccard < Jmax

AT B.C. 0.5
S oin

NON FREQUENT p
TTEMSET 28

-~

. C, DL E
( <t

\\ NON FREQUEVT/
ITEMSET

- For H = {BE} and Jmax = 0.19, Jac(AE, H) = 0.27 > Jmax whereas

Jac(ACE, H) = 0.147 < Imax- 10/38



T Relaxations of the Jaccard constraint

b

(i) A lower bound LB, which allows to prune non-diverse patterns

_=IVEPI e per
LB,(H,P)={ To@HieE (VF(P) < 6)
0 else

(i) An upper bound UB, to find patterns ensuring diversity

Vo(H) N V(P
Vi (P)] + max{6, [Vp(H)| N [Vp(P)[}

UB,(H, P) =

11/38



¥, Jaccard lower and upper bounds

b

@ Monotonicity of LB,: Let H € H be an itemset. For any two patterns
Q C P, the relationship LB,(P, H) > LB,(Q, H) holds.

w |f LBy(P, H) > Jmax = Jv(P, H) > Jmax = P is not diverse
(any super-itemset P’ O P will not be diverse)

@ Anti-monotonicity of UB,: Let H € ‘H be an itemset. For any two patterns
P C Q, the relationship UB,(P, H) > UB,(Q, H) holds.

w £ UBy(P, H) < Jmax = Jv(P, H) < Jmax = P is diverse
(any super-itemset P’ O P will also be diverse)

@ A new global constraint CLOSEDDIVERSITYp ¢(X, H, Jmax) for mining
pairwise diverse patterns that exploits the two previous relaxations.
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-‘.\‘ CLOSEDDIVERSITYp g( X, H, Jmax)
h ‘ (A. Hien et al., Constraints 2024)

- Use a vector X of Boolean variables (Xi,. .., X|z|) for representing item sets

- X" will denote the set of present items,

- CLOSEDDIVERSITY D ¢(X, H, Jmax) holds if and only if :

(1) freq(X™) > 6 and X is closed ™ CLOSEDPATTERNS
(2) X is diverse, VH € H,LB;(XT, H) < Jpmax-

Two filtering rules : Let Xpi, be the set of items filtered by (Rule #1)

@ remove 1 from dom(X;) if IH € H s.t. LBy(XT U{i}, H) > Jmax

@ remove 1 from dom(X;) if 3k € Xpi s.t. cover(XT U {i}) C cover(X™ U {k}),
then LBy(X* U {i}, H) > LBy(X* U {k}, H) > Jmax

Time complexity: O(n x (n x m))
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;‘f‘ Comparative Exploration of Extracted Pattern Landscapes

hepatitis - freq=30.0% - minsup=42

« Frequent Patterns . o .
m cFP3 o
4= EFlexics °
& GFlexics TR . .
#& ClosedDiversity 3 = e > SCE o
- sascud RN KON ‘.
. .
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"'\.,.
.....
Q.a
. $
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-‘.f False positives

g

CLOSEDDIVERSITY ensures that VH € H, LB;(P,H) < Jmax

Jmax

(P, H)
P,H

<
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-‘.f False positives

g

CLOSEDDIVERSITY ensures that VH € H, LB;(P,H) < Jmax

JV(P, H) < Jmax

LBy(P,H) < Jmax : { J(P, H) > Jmax = false positive
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-“f‘ False positives

b

CLOSEDDIVERSITY ensures that VH € H, LB;(P,H) < Jmax

J(P, H) < Jmax
< :
LBy(P,H) < Jmax : { J(P, H) > Jmax = false positive

Proposition : adding the Jaccard test before any update of H
w CLOSEDDIV+4JACCARD
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T Experiments

-‘
@ UCI datasets

@ Comparisons:
1
2

CLOSEDP

CLOSEDP+JACCARD

4
5

(1)
(2)
(3) CLoseEDDIV
(4) CLOSEDDIV+JACCARD
(5)

FuLLCP

(6)
(7)
(8)

(9)
(10)

PICKER
PATTERNSTEAM

FLEx1cs (EFLEXICS et
GFLEXICS)

GIBBS
CFTP

@ Implementation: Choco solver, timeout = 24 hours
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-“f‘ Quality of diversification

b

Let a set of patterns H = {Hi, ..., Hx}

CDFy(7) = #{(i. ) I(His Hp) < 7,1 < i <j < k}- k(k2—1)

m Cumulative distribution function on the Jaccard indices of each pair of
patterns
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n ¥,

g

CDF

Quality of diversification : heuristic

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
055
0.50
0.45
0.40
035
0.30
0.25
0.20
0.15
0.10
0.05
0.00

hepatitis - ©=30.0%

approaches

[ ]
—— ClosedDiv-Mincov
—— ClosedDiv-Mincov++Jaccard
—@— FullCP-2
—— Picker
s -—— Mikis
© ~ » » ® < S

Pairwise Jaccard x 100

(a) HEPATITIS (60 = 30%)

o
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T Quality of diversification : heuristic approaches

g

CDF

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

retail - ©=5.0%

—— ClosedDiv-Mincov
@) ClosedDiv-Mincov++Jaccard
-

FullCP-2
Picker
-=-= Mikis

K o B © «» & o

Pairwise Jaccard x 100

(b) RETAIL (6 = 5%)
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W,

Quality of diversification

sampling approaches
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(c) HEPATITIS (0 = 10%)
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S
o
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T Quality of diversification : sampling approaches

g

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

CDF

ClosedDiv-Mincov
EFlexics

GFlexics

Gibbs 1000

010 Gibbs 10000

0.05 CFTP 2

0.00 --- CFTP3

o

0
o
‘%
0
o
%

2

© Y & o

%,

Pairwise Jaccard x 100

(d) spLICEL (0 = 10%)
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sampling approaches

CPU times

f‘

-
b

~»— Gibbs 10000
CFTP 2
- CFTP3

7] -@~ closediv-Mincov
4 GFlexics
—4- Gibbs 1000

& | Erlerics

00z

4
S
N
e

ooy

v'0
0T
0’

0's
0ot

00t
00z
0'0€
ooy

09
08
oot
00z

0ot
o0'sT
08T
0'0€

0ot
o'st
00z
0'0€
ooy

oot
00z
0'0€

(60| - SPU0d3S) dWI]-NdD
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= ¥, Jaccard index vs. Overlap

e
PL—1 Vp(P1)  Vp(P2) Vp(P3)

7 b — 4

P> ta
/
P; — t3
(e) (f)
Pairwise comparison \ Jaccard Index \ Overlap Coefficient
PINP2| 2 [PINP2]  _ 2 _
PlVS. P2 PlUP27§N0'66 W—i—lo
PINP3] 1 _ [P1NP3] 1
Pl vs. P3 pioP3] — 2 — 0-25 | mmpigeay = 2 = 95

Table: Comparison of Similarity Measures

21/38



T Sensitivity analysis of the Overlap coefficient

b

T T T T T T
50| o me o wme o o a1 |
. 100 el 9% 7
a ] |8 . case# | [Vp(P)| [ [Vp(P2)l| () | (0)
\(S — 60 case; 100 100 0.333 | 0.500
~ 50 | 50 casey 110 90 0.333 | 0.556
500 = |wo w0 ] cases 120 80 0.333 | 0.625
20 casey 130 70 0.333 | 0.714
[ ] [ cases 140 60 0.333 | 0.833
ol U B cases 150 50 |0333] 1.0
1 1

| | | |
g v &> o> 0 20
& ¥ ¥ P F

[Bvo(P) Ovip(Py) V(P2 Dvn(Py) |

m By considering the proportion of the smaller set contained within the larger set,
the Overlap coefficient offers a more informative and nuanced measure of set
similarity.
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= Y. Anti-monotonicity of the Overlap Coefficient

b

T T T T T T T

1 - |
—e— Overlap
. —a—  Tax
Iﬁ 0.8 |
+.-
X
)
T 06 2
N
o [ » » n
0.4 s
| | | | | | |
1 2 3 4

The size of the partial assignment | X |

- For H = {AE}, X* = {A} C {A,C} C {A,C,D} C {A,C,D,E},
Overlap(A,H) = 1 > Tmax whereas Overlap(AC,H) = .33 < Tpax.
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T Relaxations of the overlap coefficient
| ]
h ‘ (M. Douad et al., APIN 2025)

(i) A lower bound which allows to prune non-diverse patterns

0|V (P)]
LBO(_‘(P, H) — (r)nin(|VD(P)|’ [V (H)|)

if (V,’_’,r(P) < 0)
else

(i) An upper bound to find patterns ensuring diversity

Vo(P) N Vo (H)|
7o)

UBO(:(P, H) = min (
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¥, Overlap lower and upper bounds

b

@ Monotonicity of LBoc: Let H € H be an itemset. For any two patterns
Q@ C P, the relationship LBoc(P, H) < LBoc(Q, H) holds.

w |f LBoc(P, H) > Jmax = JV(P, H) > Jmax = P is not diverse
(any super-itemset P’ O P will not be diverse)

@ Anti-monotonicity of UBopc: Let H € H be an itemset. For any two patterns
P C Q, the relationship UBoc(P, H) > UBoc(Q, H) holds.

w |[f UBoc(P, H) < Jmax = Jy(P, H) < Jmax = P is diverse
(any super-itemset P’ O P will also be diverse)

@ A new global constraint OverlapDivy, (X, H, Tmax) for mining pairwise
diverse patterns that exploits the two previous relaxations.
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q.f OverlapDivaﬂ(X, H, Tmax)
h ‘ (A. Douad et al., APIN 2025)

- Use a vector X of Boolean variables (X, ..., X|z|) for representing item sets

- Xt will denote the set of present items,

- OverlapDivy, o(X,H, Tmax) holds if and only if :
X+ is diverse; VH € H, LBoc(X*, H) < Tpax

Two filtering rules : Let Xp;, be the set of items filtered by (Rule #1)

1 ¢ Dom(X;) iff { IH e H st LBoc(X"U {i)}» H) > Trax (R1)

3k € Xpiy st. Vp(XT U{i}) € Vp(XT U{k}) (R2)

Time complexity: O(n x (n x m))
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T A CP model for mining diverse closed and frequent itemsets

b

OverlapDivy (X, Tmax, H) (1)
ClosedOverlapp 4(X, ¢, Tmax, H) = { CoverSizeps(X,c)Ac >0 (2)
CoverClosurep(X) (3)

@ OverlapDiv: Enforces diversity by controlling the overlap between the
current itemset and the previously mined itemsets in H.

@ CoverSize (schaus et al., 2017): Ensures frequency by requiring that the
cover size of the itemset satisfies: Freqp(X) > 0.

@ CoverClosure: Guarantees closure by ensuring that the itemset is maximal
w.r.t. the frequency measure, i.e., Closgeq(X) = X.
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hepatitis, Freq: 10.0%, MinSup: 14

ClosedPattern
ClosedDiv
ClosedOverlap
intersection

PCA of Extracted Pattern Landscapes

mushroom, Freq: 5.0%, MinSup: 407

ClosedDiv

intersection

ClosedPattern

ClosedOverlap
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-“f‘ Optimization model or mining k-diverse frequent itemsets

b

Both ClosedOverlap and CLOSEDDIVERSITY are sensitive to order in
which patterns are explored ™ can significantly influence the output

Formulate the initial problem as an optimization one: ™ select the best
pattern set S* of size k maximizing some quality measure ¢ over all

subsets of P

Joint entropy measure as a quality measure:

Definition (Joint entropy of an itemset)

Let P = {i,...,is} be an itemset and ¢ = (ci, ..., ca) € {0,1}" a tuple of binary
values. The joint entropy of P is given as

H(P) = — Z p(h=c1,,...,in=cn)log, p(ih =cC1,,...,in = Cn) (1)
Ge{0,1}7
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T Join entropy-based formulation for minimizing k-pattern set

h. ‘ redundancy

Each pattern H; € H is represented as a binary vector, within a |D| x |#|

matrix, indicating the transactions where H; is present.

H = {ABCD, AE, BE}

{AB,C,D} | {A E} | {B,E}
0 0 1
0 0 0
0 0 0
1 1 1
1 0 0
0 0 0
0 1 0
0 1 0
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-‘.f Join entropy-based formulation for minimizing k-pattern set
h ‘ redundancy

The Entropy Computation exploits the binary vectors ¢ € {0, 1} derived from
the binary matrix:

freq(Hy = c1,..., Hx = ¢ freq(Hy = c1,..., Hx = ¢
H(H):— Z ( 1 1|D| )/ 2( ( 1 1‘,D| ))

ce{0,1}x

@ Diversity reflects the variability or balance in the presence of patterns across
transactions:
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-‘.f Join entropy-based formulation for minimizing k-pattern set
h ‘ redundancy

The Entropy Computation exploits the binary vectors ¢ € {0, 1}* derived from
the binary matrix:

freq(Hy = c1, ..., Hx = ¢k freq(Hy = c1, ..., Hx = ¢«
H(H) = Z ( D] )/ 2( ( D| ))

cef{0,1}
@ Diversity reflects the variability or balance in the presence of patterns across
transactions:

- Pattern {A, B, C, D}: Appears in 2 transactions (iy,15)
- Pattern {A, E}: Appears in 3 transactions (ts,t7,t3)
- Pattern {B, E}: Appears in 2 transactions (t1,ts)
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-‘.f Join entropy-based formulation for minimizing k-pattern set
h ‘ redundancy

The Entropy Computation exploits the binary vectors ¢ € {0, 1}* derived from
the binary matrix:

freq(Hy = ¢y, ..., Hx =
H(H):_ Z req( 1 C1, s Mk Ck)

freq(Hh =c1,...,Hyk=¢
|D| /ng( CI( 1 1 k k))

ce{0,1}+ ‘ID|

@ Diversity reflects the variability or balance in the presence of patterns across
transactions:

- If all patterns appear in all transactions, diversity is low because there
is no variability.
- If each pattern appears in a unique set of transactions, diversity is high.

30/38



Join entropy-based formulation for minimizing k-pattern set

¥
h. ‘ redundancy

The Entropy Computation exploits the binary vectors ¢ € {0, 1}* derived from
the binary matrix:

freq(Hy =c1,...,Hk = ¢ freq(Hh =c1,...,Hyk=¢
ce{0,1}+ | D]
@ Unique bit codes in this matrix are: {001,000, 111,100,010}

@ Occurrences: 001: 1, 000: 3, 111: 1, 100: 1, 010: 2
P(001) = %, P(000) = 3, P(111) = &, P(100) = %, P(010) =2 =1

The joint entropy H is:

1 1 3 3 1 1 1 1 2 2
H(H):_<8|Og28+8|Og28+8|0g28+8|0g28+8|Og28>

= 2.1556 bits
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T Join entropy-based formulation for minimizing k-pattern set

h. ‘ redundancy

@ Note that the joint entropy is always between 0 and k.

@ It is maximal when patterns are fully uncorrelated and uniformly
distributed.

e For 3 binary variables, there are 23 = 8 possible combinations.

@ If each occurs exactly once, then:

8
1 1
H(P17P27P3):_<28|0g28>

i=1

1 .
:_<8>< 3 ><(—3)> = 3 bits
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T

b

Join entropy-based formulation for minimizing k-pattern set

redundancy

A Greedy Optimization Approach: lteratively integrates patterns with
the highest entropy contribution.

{ABCD} | {AE} | {BE} {E} | {AE} | {BE} {ABCD} | {E} | {BE} {ABCD} | {AE} | {E}
0 0 1 1 0 1 0 1 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 1 0 0 1 1
Joint Entropy = 2.1556 Joint Entropy = 2.1556 Joint Entropy = 2.1556 Joint Entropy = 2.25

Figure: Maximizing Joint Entropy: finding the best k-pattern set through
candidate itemset replacement
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T

h‘

" 3

CPU times: CLOSEDDIVERSITY vs. ClosedOverlap

CLOSEDDIVERSITY ClosedOverlap
Dataset 0%
TxT ® | CPU-Time (sec) | # Patterns | CPU-Time (sec) | # Patterns
CHESS 20 1.57 64 0.35 56
75 x 3196 15 12.36 237 1.00 224
49.33% 10 408.19 1621 15.62 1597
KR-VS-KP 30 0.24 13 0.11 10
73 x 3196 20 1.41 63 0.35 57
49.32 % 10 368.50 1608 15.30 1570
CONNECT 30 6.92 18 0.59 11
129 x 67557 18 134.91 140 5.76 104
33.33% 15 492.53 296 17.35 251
HEART-CLEVELAND | 10 40.05 1469 2.26 1394
95 x 296 8 313.23 4760 12.98 4814
47.37% 6 4630.88 20489 281.19 22050
SPLICEL 10 11.30 412 2.04 374
287 x 3190 5 2316.70 7919 112.46 5763
20.91% 2 TO NA 112.46 5763
MUSHROOM 5 23.65 547 1.96 551
112 x 8124 1 5172.93 9934 202.43 9323
18.75% 0.5 27656.11 23930 1073.44 21974
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-‘\“ CPU times: CLOSEDDIVERSITY vs. ClosedOverlap

h.

CLOSEDDIVERSITY ClosedQOverlap
Dataset 0%
TxT ® | CPU-Time (sec) | # Patterns | CPU-Time (sec) | # Patterns
T40I10D100K | 8 196.77 124 44.14 114
942 x 100000 5 880.13 283 200.19 271
4.20% 1 31213.08 7216 3523.54 5924
PumsB 40 31.33 3 2.67 3
2113 x 49046 30 126.25 13 10.41 11
3.50% 20 431.91 38 35.04 39
T10I14D100K 5 2.26 10 0.62 10
870 x 100000 1 1455.39 359 305.70 351
1.16% 0.5 2910.10 606 645.35 595
RETAIL 5 15.94 11 4.49 11
16470 x 88162 1 864.30 104 206.57 103
0.06% 0.4 12489.13 514 3500.13 503
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T Diversity : CLOSEDDIVERSITY vs. ClosedOverlap

g

hepatitis, Freq: 42 (30.0%)

1.0
0.8 4
0.6 4
[T ——— ClosedDiv
8 —— ClosedOverlap
0.4 1
0.2 4
A
0.0 4
S &Y ~ S = &5 & ~ 54 4 S
<& ~

(a) HEPATITIS (0 = 30%)
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T Diversity : CLOSEDDIVERSITY vs. ClosedOverlap

g

connect, Freq: 12161 (18.0%)

1.0
0.8 4
0.6 4
[T ——— ClosedDiv
8 —— ClosedOverlap
0.4 1
0.2 4
0.0 4 —
S &Y ~ S = &5 & ~ 54 4 S
<& ~

(b) ConNNECT (6 = 18%)

33/38



p |
o

CDF

Diversity : CLOSEDDIVERSITY vs. ClosedOverlap

pumsb, Freq: 9810 (20.0%)

1.0 4
0.8
0.6
——— ClosedDiv
—— ClosedOverlap
0.4
0.2 1
oo0{ —
SES S S S 5 & S & &
& ~

(c) PumsB (6 = 20%)
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T Search strategies for MOSTDISTANT problem

h“ (M. Vavrille et al., 2023)

CLOSEDDIVERSITY and ClosedQOverlap global constraints work at the
propagation level of the solver

Idea: Define dedicated new search strategies to orient the search towards diverse
patterns " no modification of the model nor the solver's inner structure

Task : Given a history H of solutions (initially empty), the task is to mine new
patterns P ensuring a minimum diversity according to a some History score
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: ‘\“ ORIENTEDDETERMINISTIC strategy

A vector X of Boolean variables (X, ..., X|z|) for representing a pattern P

Definition (History score)

Given a pattern P being constructed, an item i whose associated variables X; is
uninstantiated, and a history H of solutions, we define the history score as

max Jv(PU{i}, H)

The history score ensures a minimum diversity between P U {i} and solutions of H

Brunching heuristic : select the next uninstantiated variable X , that minimizes the

min
score (a low Jaccard means a good diversity):

imin <— argmin max Jy (P U {i}, H)
1<i<|z| HEH
ID(X)) =2

m The search may be stuck in a local optimum, i.e. solutions will be searched repeatedly
in the same space.
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-‘.f ORIENTEDRANDOM Strategy

Select the next uninstantiated variable according to some weight distribution

Definition (variable weight)

Let W be an array of size |Z|. Given a pattern P being constructed, an item i whose
associated variables X; is uninstantiated, and a history H of solutions, we the define the
weight of X; as

1

max J(PU{i},H)+e€

Wil =

Instantiated variables are given a weight of 0

To bias the random distribution towards small values, we have to invert the computed
history score

Brunching heuristic : the next uninstantiated variable is randomly chosen with respect
to the weights in W

36 /38



-‘.f Choco-Mining: A Java Library For Itemset Mining
h ‘ (Vernerey et al. JOSS 2023)

o Une nouvelle bibliothéque Choco-Mining! qui regroupe un ensemble
de contraintes pour la fouille de motifs.

o Elle permet a un utilisateur intéressé de facilement réutiliser ces
contraintes dans ses propres projets.

https://gitlab.com/chaver/choco-mining
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Choco-Mining: A Java Library For Itemset Mining

(Vernerey et al. JOSS 2023)
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=¥, Summary

b

A new generic solution for mining diverse patterns
o Exploiting relaxations and search strategies

@ Other diversity measures (entropy) ?

Exploiting Jaccard index within search strategies show improved diversity
compared to CLOSEDDIVERSITY
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