

Constraint Programming for Diversity Pattern Set Mining

Samir LOUDNI

Join work with A. Hien, M. Douad, A. Zimmermann, N. Aribi, A. Ouali, Y. Lebbah

GT CAVIAR 08/04/2025

... is "the use of sophisticated data analysis tools to **discover** unknown, valid patterns and relationships in large datasets"

Data mining:

- Core of KDD
- Search for regularities from transaction databases
- Pattern domain: item-sets, sequences, graphs, etc.
- examples including pattern mining, clustering, association rules, etc.

	g ₁	g ₂	g ₃	g ₄
s_1	X			Х
<i>s</i> ₂	X	X	X	
<i>S</i> 3		X		X
<i>S</i> ₄	X	X	X	
<i>S</i> 5	X	X		x

frequent pattern : g_1g_2

association rule : $g_1g_2 \rightarrow g_3$

Frequent itemset mining

Problem Definition

Given the objects in $\mathcal O$ described with the Boolean attributes in $\mathcal I$, listing every itemset having a frequency above a given threshold $\theta \in \mathbb N$.

Input:

	a ₁	a_2		a_n
01	$d_{1,1}$	$d_{1,2}$		$d_{1,n}$
02	$d_{2,1}$	$d_{2,2}$		$d_{2,n}$
:				
	:	:	•	:
Om	d _{m 1}	dm 2		dm n

and a minimal frequency $\theta \in \mathbb{N}.$

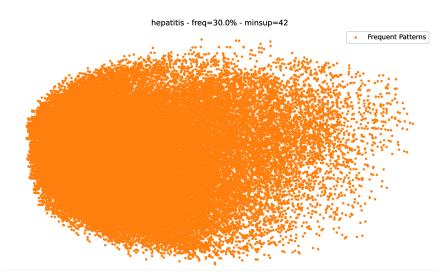
where $d_{i,j} \in \{\text{true}, \text{false}\}$

Problem Definition

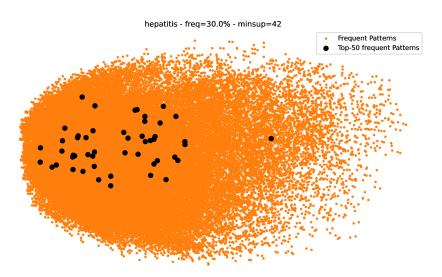
Given the objects in \mathcal{O} described with the Boolean attributes in \mathcal{I} , listing every itemset having a frequency above a given threshold $\theta \in \mathbb{N}$.

Output: every $X \subseteq \mathcal{I}$ such that there are at least θ objects having all attributes in X.

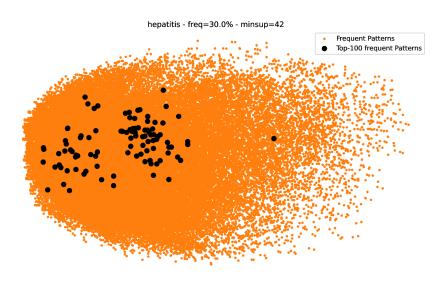
Pattern flooding: Mining frequent itemsets



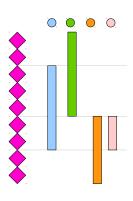
Pattern flooding: Mining top-k frequent itemsets



Pattern flooding: Mining top-k frequent itemsets



- Too many patterns, unmanageable and diversity not necessary assured
- Find a set of patterns that is:
 - small
 - non-redundant
- Several approaches for mining non-redundant patterns :
 - Mikis (Knobbe et al., ECML-PKDD'06)
 - Piker (Bringmann et al., KIS 2009)
 - Flexics (Dzyuba et al., DMKD 2017),
 - CFTP (Boley et al., KDD 2012)
- Exploiting CP for mining diverse set of patterns



A generic framework for solving combinatorial problems

- A declarative description of the problem by a triplet (X,D,C) where
 - $X = \{x_1, \dots, x_n\}$ is finite set of variables
 - $D = \{D_1, \dots, D_n\}$ is finite set of domains (a.k.a possible values) of variables
 - $C = \{c_1, \dots, c_e\}$ is a set of constraints restricting the values of variables x_i

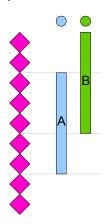
• **Resolution** = Enumeration + Filtering

solution \equiv assignments on X satisfying all constraints of C

Measuring redundancy

Exploiting similarity measure to compare pairs of patterns :

- $|A \cap B|/\min(|A|, |B|)$ (Overlap)
- $|A \cup B| |A \cap B|$ (Hamming distance)
- $|A \cap B|/|A|.|B|$ (Cosine similarity)
- $|A \cap B|/|A \cup B|$ (Jaccard similarity)



Diversification problems

Definition (Hebrard et al., AAAI 2005)

Let $k \geq 2$ be an integer, and S be a set of solutions.

• The MAXDIVERSEKSET(k) problem is the problem of finding a subset \widetilde{S} of S of size k such that for all $S \subseteq S$, |S| = k,

$$\min_{\substack{s_1,s_2\in\widetilde{S}\\s_1\neq s_2}}J_{\mathcal{V}}(s_1,s_2)\leq \min_{\substack{s_1,s_2\in S\\s_1\neq s_2}}J_{\mathcal{V}}(s_1,s_2).$$

• Given a set S of previously found solutions (a history), the MOSTDISTANT(S) problem is the problem of finding a solution $\widetilde{s} \in S$ such that for all $s \in S$,

$$\min_{s' \in S} J_{\mathcal{V}}(\widetilde{s}, s') \leq \min_{s' \in S} J_{\mathcal{V}}(s, s').$$

- $\operatorname{MaxDiverseKSet}(k)$ can be seen as finding a set of k solutions minimizing the pairwise Jaccard values.
- ${
 m MOSTDISTANT}$ aims at finding the most distant solution from the history of solution ; can be seen as a greedy algorithm solving ${
 m MAXDIVERSEKSET}$ problem.

First approximation of the $\rm MOSTDISTANT$ problem (Hien et al., ECML-PKDD 2020 & Constraints 2024)

Definition (Maximum Diversity Constraint)

Let $\mathcal H$ be a history of patterns, j_{max} a bound on the maximum allowed Jaccard, and P an itemset. The maximum diversity constraint ensures that P is diverse w.r.t. $\mathcal H$ and J_{max} .

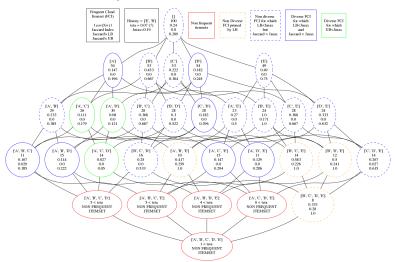
$$\operatorname{div}(P,\mathcal{H},j_{max}) \Leftrightarrow \forall H \in \mathcal{H}, J_{\mathcal{V}}(P,H) \leq J_{max}$$

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse patterns.

Task: Given a history \mathcal{H} of k pairwise diverse patterns (initially empty), the task is to mine new patterns P such that $\operatorname{div}(P,\mathcal{H},j_{max})$ is satisfied.

Anti-monotonicity of the maximum Jaccard constraint

The anti-monotonicity does not hold for the Maximum Jaccard constraint



- For $\mathcal{H} = \{BE\}$ and $J_{max} = 0.19$, $Jac(AE, \mathcal{H}) = 0.27 \ge J_{max}$ whereas $Jac(ACE, \mathcal{H}) = 0.147 \le J_{max}$.

Relaxations of the Jaccard constraint

(i) **A lower bound** LB_J , which allows to prune non-diverse patterns

$$LB_{J}(H, P) = \begin{cases} \frac{\theta - |\mathcal{V}_{H}^{pr}(P)|}{|\mathcal{V}_{D}(H)| + |\mathcal{V}_{H}^{pr}(P)|} & \text{if } (\mathcal{V}_{H}^{pr}(P) < \theta) \\ 0 & \text{else} \end{cases}$$

(ii) An upper bound UB_J to find patterns ensuring diversity

$$UB_{J}(H,P) = \frac{|\mathcal{V}_{\mathcal{D}}(H) \cap \mathcal{V}_{\mathcal{D}}(P)|}{|\mathcal{V}_{H}^{pr}(P)| + \max\{\theta, |\mathcal{V}_{\mathcal{D}}(H)| \cap |\mathcal{V}_{\mathcal{D}}(P)|\}}$$

Jaccard lower and upper bounds

- Monotonicity of LB_J : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $Q \subseteq P$, the relationship $LB_J(P, H) \ge LB_J(Q, H)$ holds.
 - If $LB_J(P, H) > J_{max} \Rightarrow J_V(P, H) > J_{max} \Rightarrow P$ is not diverse (any super-itemset $P' \supseteq P$ will not be diverse)
- Anti-monotonicity of UB_J : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $UB_J(P, H) \ge UB_J(Q, H)$ holds.
 - If $UB_J(P, H) \le J_{max} \Rightarrow J_V(P, H) \le J_{max} \Rightarrow P$ is diverse (any super-itemset $P' \supseteq P$ will also be diverse)
- A new global constraint CLOSED DIVERSITY $\mathcal{D}_{,\theta}(X,\mathcal{H},J_{max})$ for mining pairwise diverse patterns that exploits the two previous relaxations.

CLOSED DIVERSITY $_{\mathcal{D},\theta}(X,\mathcal{H},J_{max})$ (A. Hien et al., Constraints 2024)

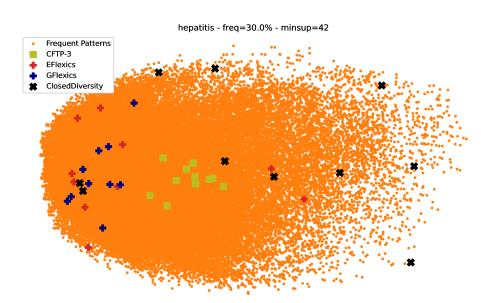
- Use a vector X of Boolean variables $(X_1,\ldots,X_{|\mathcal{I}|})$ for representing item sets
- X⁺ will denote the set of present items,
- CLOSEDDIVERSITY $_{\mathcal{D}, \theta}(X, \mathcal{H}, J_{max})$ holds if and only if :
 - (1) $freq(X^+) \ge \theta$ and X^+ is closed \longrightarrow CLOSEDPATTERNS
 - (2) X^+ is diverse, $\forall H \in \mathcal{H}, LB_J(X^+, H) \leq J_{max}$.

Two filtering rules: Let X_{Div} be the set of items filtered by (Rule #1)

- ① remove 1 from $dom(X_i)$ if $\exists H \in \mathcal{H}$ s.t. $LB_J(X^+ \cup \{i\}, H) > J_{max}$
- ② remove 1 from $dom(X_i)$ if $\exists k \in X_{Div}$ s.t. $cover(X^+ \cup \{i\}) \subseteq cover(X^+ \cup \{k\})$, then $LB_J(X^+ \cup \{i\}, H) > LB_J(X^+ \cup \{k\}, H) > J_{max}$

Time complexity: $O(n \times (n \times m))$

Comparative Exploration of Extracted Pattern Landscapes



CLOSED DIVERSITY ensures that $\forall H \in \mathcal{H}, LB_J(P, H) \leq J_{max}$

$$LB_J(P, H) \le J_{max} : \begin{cases} J_V(P, H) \le J_{max} \\ J_V(P, H) > J_{max} \end{cases}$$

CLOSED DIVERSITY ensures that $\forall H \in \mathcal{H}, \ LB_J(P,H) \leq J_{max}$

$$LB_J(P, H) \le J_{max} : \begin{cases} J_{\mathcal{V}}(P, H) \le J_{max} \\ J_{\mathcal{V}}(P, H) > J_{max} \Rightarrow \textit{ false positive} \end{cases}$$

CLOSED DIVERSITY ensures that $\forall H \in \mathcal{H}, LB_J(P, H) \leq J_{max}$

$$LB_J(P,H) \leq J_{max}: \left\{ egin{array}{l} J_{\mathcal{V}}(P,H) \leq J_{max} \ J_{\mathcal{V}}(P,H) > J_{max} \Rightarrow \textit{ false positive} \end{array}
ight.$$

Proposition : adding the Jaccard test before any update of \mathcal{H} \longrightarrow CLOSEDDIV+JACCARD

Experiments

UCI datasets

- Comparisons:
 - (1) ClosedP
 - (2) ClosedP+Jaccard
 - (3) ClosedDiv
 - (4) ClosedDiv+Jaccard
 - (5) FullCP

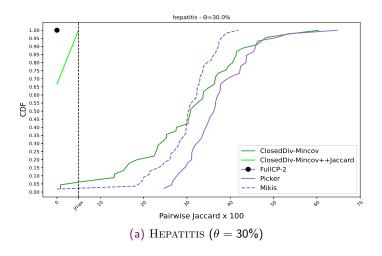
- (6) Picker
- (7) PatternsTeam
- (8) FLEXICS (EFLEXICS et GFLEXICS)
- (9) Gibbs
- (10) CFTP
- Implementation: Choco solver, timeout = 24 hours

Let a set of patterns $\mathcal{H} = \{H_1, \dots, H_k\}$

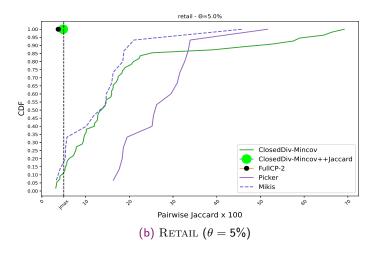
$$CDF_{\mathcal{H}}(\tau) = \#\{(i,j)|J_{\mathcal{V}}(H_i, H_j) \leq \tau, 1 \leq i < j \leq k\} \cdot \frac{2}{k(k-1)}$$

Cumulative distribution function on the Jaccard indices of each pair of patterns

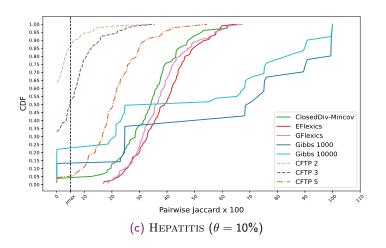
Quality of diversification: heuristic approaches



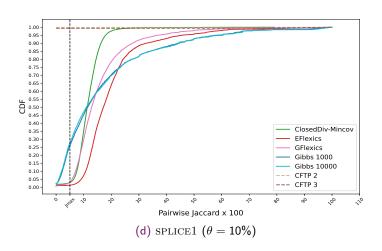
Quality of diversification: heuristic approaches



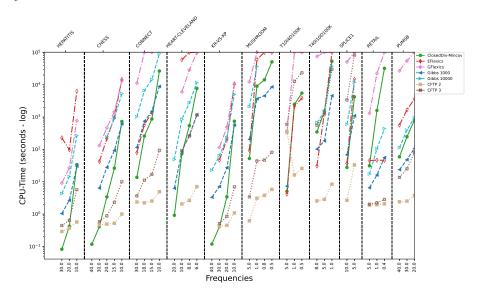
Quality of diversification: sampling approaches

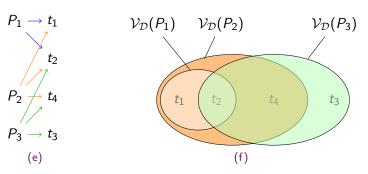


Quality of diversification: sampling approaches



CPU times : sampling approaches

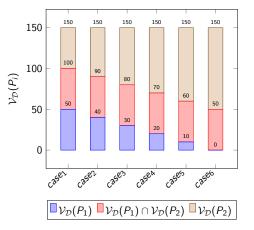




Pairwise comparison	Jaccard Index	Overlap Coefficient
P1 vs. P2	$\frac{ P1 \cap P2 }{ P1 \cup P2 } = \frac{2}{3} \approx 0.66$	$\frac{ P1 \cap P2 }{\min(P1 , P2)} = \frac{2}{2} = 1.0$
P1 vs. P3	$\frac{ P1 \cap P3 }{ P1 \cup P3 } = \frac{1}{4} = 0.25$	$\frac{ P1 \cap P3 }{\min(P1 , P3)} = \frac{1}{2} = 0.5$

Table: Comparison of Similarity Measures

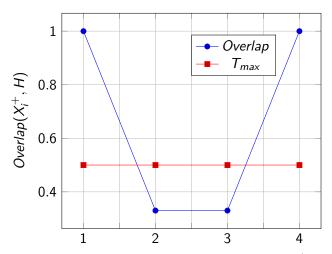
Sensitivity analysis of the Overlap coefficient



case#	$ \mathcal{V}_{\mathcal{D}}(P_1) $	$ \mathcal{V}_{\mathcal{D}}(P_2) $	(٦)	(0)
case ₁	100	100	0.333	0.500
case ₂	110	90	0.333	0.556
case ₃	120	80	0.333	0.625
case ₄	130	70	0.333	0.714
case ₅	140	60	0.333	0.833
case ₆	150	50	0.333	1.0

By considering the proportion of the smaller set contained within the larger set, the Overlap coefficient offers a more informative and nuanced measure of set similarity.

Anti-monotonicity of the Overlap Coefficient



The size of the partial assignment $|X_i^+|$

- For $\mathcal{H} = \{AE\}$, $X^+ = \{A\} \subseteq \{A, C\} \subseteq \{A, C, D\} \subseteq \{A, C, D, E\}$, $Overlap(A, \mathcal{H}) = 1 \ge T_{max}$ whereas $Overlap(AC, \mathcal{H}) = .33 \le T_{max}$.

Relaxations of the overlap coefficient (M. Douad et al., APIN 2025)

(i) A lower bound which allows to prune non-diverse patterns

$$\mathit{LB}_{\mathit{OC}}(P,\,H) = \left\{ \begin{array}{ll} \frac{\theta - |\mathcal{V}^{\mathit{pr}}_{H}(P)|}{\min(|\mathcal{V}_{\mathcal{D}}(P)|,\,|\mathcal{V}_{\mathcal{D}}(H)|)} & \text{if } \left(\mathcal{V}^{\mathit{pr}}_{H}(P) < \theta\right) \\ 0 & \text{else} \end{array} \right.$$

(ii) An upper bound to find patterns ensuring diversity

$$UB_{OC}(P, H) = \min \left(\frac{|\mathcal{V}_{\mathcal{D}}(P) \cap \mathcal{V}_{\mathcal{D}}(H)|}{\theta}, 1 \right)$$

Overlap lower and upper bounds

- Monotonicity of LB_{OC} : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $Q \subseteq P$, the relationship $LB_{OC}(P, H) \leq LB_{OC}(Q, H)$ holds.
 - If $LB_{OC}(P, H) > J_{max} \Rightarrow J_{\mathcal{V}}(P, H) > J_{max} \Rightarrow P$ is not diverse (any super-itemset $P' \supseteq P$ will not be diverse)
- Anti-monotonicity of UB_{OC} : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $UB_{OC}(P, H) \ge UB_{OC}(Q, H)$ holds.
 - If $UB_{OC}(P, H) \le J_{max} \Rightarrow J_{\mathcal{V}}(P, H) \le J_{max} \Rightarrow P$ is diverse (any super-itemset $P' \supseteq P$ will also be diverse)
- A new global constraint OverlapDiv_{D, θ}(X, \mathcal{H} , T_{max}) for mining pairwise diverse patterns that exploits the two previous relaxations.

OverlapDiv_{D, θ}(X, \mathcal{H} , T_{max}) (A. Douad et al., APIN 2025)

- Use a vector X of Boolean variables $(X_1, \ldots, X_{|\mathcal{I}|})$ for representing item sets
- X⁺ will denote the set of present items,
- OverlapDiv $_{\mathcal{D},\theta}(X,\mathcal{H},T_{max})$ holds if and only if :

$$X^+$$
 is diverse; $\forall H \in \mathcal{H}, LB_{OC}(X^+, H) \leq T_{max}$

Two filtering rules: Let X_{Div} be the set of items filtered by (Rule #1)

$$1 \notin \textit{Dom}(X_i) \text{ iff } \begin{cases} \exists \ H \in \mathcal{H} \text{ s.t. } LB_{OC}(X^+ \cup \{i\}, H) > T_{max} \\ \exists k \in X_{Div} \text{ s.t. } \mathcal{V}_{\mathcal{D}}(X^+ \cup \{i\}) \subseteq \mathcal{V}_{\mathcal{D}}(X^+ \cup \{k\}) \end{cases} \tag{\textbf{R1}}$$

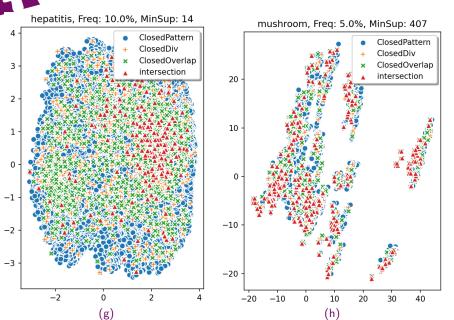
Time complexity: $O(n \times (n \times m))$

A CP model for mining diverse closed and frequent itemsets

$$\texttt{ClosedOverlap}_{\mathcal{D},\theta}(X,c,T_{\textit{max}},\mathcal{H}) \equiv \begin{cases} \texttt{OverlapDiv}_{\mathcal{D},\theta}(X,T_{\textit{max}},\mathcal{H}) & (1) \\ \texttt{CoverSize}_{\mathcal{D},\theta}(X,c) \land c \geq \theta & (2) \\ \texttt{CoverClosure}_{\mathcal{D}}(X) & (3) \end{cases}$$

- OverlapDiv: Enforces diversity by controlling the overlap between the current itemset and the previously mined itemsets in \mathcal{H} .
- CoverSize (schaus et al., 2017): Ensures frequency by requiring that the cover size of the itemset satisfies: $\operatorname{Freq}_{\mathcal{D}}(X) \geq \theta$.
- CoverClosure: Guarantees closure by ensuring that the itemset is maximal w.r.t. the frequency measure, i.e., $Clos_{freq}(X) = X$.

PCA of Extracted Pattern Landscapes



Optimization model or mining k-diverse frequent itemsets

Both ClosedOverlap and CLOSEDDIVERSITY are sensitive to order in which patterns are explored \longrightarrow can significantly influence the output

Formulate the initial problem as an optimization one: \blacksquare select the best pattern set S^* of size k maximizing some quality measure ϕ over all subsets of $\mathcal P$

Joint entropy measure as a quality measure:

Definition (Joint entropy of an itemset)

Let $P=\{i_1,\ldots,i_n\}$ be an itemset and $c=(c_1,\ldots,c_n)\in\{0,1\}^n$ a tuple of binary values. The joint entropy of P is given as

$$\mathbf{H}(P) = -\sum_{\mathbf{c}_1 \in \{0,1\}^n} p(i_1 = c_1, \dots, i_n = c_n) \log_2 p(i_1 = c_1, \dots, i_n = c_n)$$
 (1)

Each pattern $H_i \in \mathcal{H}$ is represented as a **binary vector**, within a $|\mathcal{D}| \times |\mathcal{H}|$ matrix, indicating the transactions where H_i is present.

$$\mathcal{H} = \{ABCD, AE, BE\}$$

$\{A, B, C, D\}$	{ <i>A</i> , <i>E</i> }	{ <i>B</i> , <i>E</i> }
0	0	1
0	0	0
0	0	0
1	1	1
1	0	0
0	0	0
0	1	0
0	1	0

The Entropy Computation exploits the binary vectors $c \in \{0,1\}^k$ derived from the binary matrix:

$$H(\mathcal{H}) = -\sum_{c \in \{0,1\}^k} \frac{\textit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|} \textit{log}_2(\frac{\textit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|})$$

• Diversity reflects the variability or balance in the presence of patterns across transactions:

The Entropy Computation exploits the binary vectors $c \in \{0,1\}^k$ derived from the binary matrix:

$$H(\mathcal{H}) = -\sum_{c \in \{0,1\}^k} \frac{\textit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|} log_2(\frac{\textit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|})$$

- Diversity reflects the variability or balance in the presence of patterns across transactions:
 - Pattern $\{A, B, C, D\}$: Appears in 2 transactions (t_4, t_5)
 - Pattern $\{A, E\}$: Appears in 3 transactions (t_4, t_7, t_8)
 - Pattern $\{B, E\}$: Appears in 2 transactions (t_1, t_4)

The Entropy Computation exploits the binary vectors $c \in \{0,1\}^k$ derived from the binary matrix:

$$H(\mathcal{H}) = -\sum_{c \in \{0,1\}^k} \frac{\mathit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|} log_2(\frac{\mathit{freq}(H_1 = c_1, \ldots, H_k = c_k)}{|\mathcal{D}|})$$

- Diversity reflects the variability or balance in the presence of patterns across transactions:
 - If all patterns appear in all transactions, diversity is **low** because there is no variability.
 - If each pattern appears in a unique set of transactions, diversity is $\boldsymbol{high}.$

The Entropy Computation exploits the binary vectors $c \in \{0,1\}^k$ derived from the binary matrix:

$$\textit{H}(\mathcal{H}) = -\sum_{c \in \{0,1\}^k} \frac{\textit{freq}(\textit{H}_1 = \textit{c}_1, \dots, \textit{H}_k = \textit{c}_k)}{|\mathcal{D}|} \textit{log}_2(\frac{\textit{freq}(\textit{H}_1 = \textit{c}_1, \dots, \textit{H}_k = \textit{c}_k)}{|\mathcal{D}|})$$

- ullet Unique bit codes in this matrix are: $\{001,000,111,100,010\}$
- Occurrences: 001: 1, 000: 3, 111: 1, 100: 1, 010: 2
- $P(001) = \frac{1}{8}$, $P(000) = \frac{3}{8}$, $P(111) = \frac{1}{8}$, $P(100) = \frac{1}{8}$, $P(010) = \frac{2}{8} = \frac{1}{4}$
- The joint entropy *H* is:

$$H(\mathcal{H}) = -\left(\frac{1}{8}\log_2\frac{1}{8} + \frac{3}{8}\log_2\frac{3}{8} + \frac{1}{8}\log_2\frac{1}{8} + \frac{1}{8}\log_2\frac{1}{8} + \frac{2}{8}\log_2\frac{2}{8}\right)$$

= **2.1556** bits

- Note that the joint entropy is always between 0 and k.
- It is maximal when patterns are fully uncorrelated and uniformly distributed.
- For 3 binary variables, there are $2^3 = 8$ possible combinations.
- If each occurs exactly once, then:

$$H(P_1, P_2, P_3) = -\left(\sum_{i=1}^{8} \frac{1}{8} \log_2 \frac{1}{8}\right)$$

= $-\left(8 \times \frac{1}{8} \times (-3)\right) = 3$ bits

A Greedy Optimization Approach: Iteratively integrates patterns with the highest entropy contribution.

	{A B C D}	{A E}	{B E}	{ E }	{A E}	{B E}	{A B C D}	{ E }	{B E}		{A B C D}	{A E}	{E}
	0	0	1	1	0	1	0	1	1		0	0	1
	0	0	0	1	0	0	0	1	0		0	0	1
	0	0	0	0	0	0	0	0	0		0	0	0
	1	1	1	 1	1	1	 1	1	1	\rightarrow	1	1	1
	1	0	0	 0	0	0	 1	0	0		1	0	0
	0	0	0	0	0	0	0	0	0		0	0	0
	0	1	0	1	1	0	0	1	0		0	1	1
	0	1	0	1	1	0	0	1	0		0	1	1
Joint Entropy = 2.1556		Joint	Entropy	= 2.1556	Joint Entre	pv = 2	2.1556		Joint Enti	ropv = 2	.25		

Figure: Maximizing Joint Entropy: finding the best k-pattern set through candidate itemset replacement

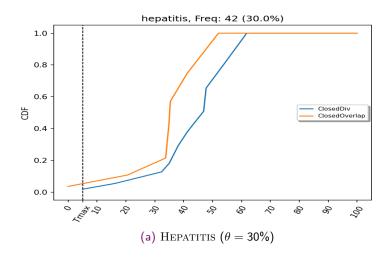
CPU times: ClosedDiversity vs. ClosedOverlap

Dataset		ClosedDiv	ERSITY	ClosedOverlap			
$\mathcal{T} \times \mathcal{I}$	θ %	CPU-Time (sec)	# Patterns	CPU-Time (sec)	# Patterns		
Chess	20	1.57	64	64 0.35			
75 × 3196	15	12.36	237	1.00	224		
49.33%	10	408.19	1621	15.62	1597		
Kr-vs-kp	30	0.24	13	0.11	10		
73 × 3196	20	1.41	63	0.35	57		
49.32 %	10	368.50	1608	15.30	1570		
Connect	30	6.92	18	0.59	11		
129 × 67557	18	134.91	140	5.76	104		
33.33%	15	492.53	296	17.35	251		
HEART-CLEVELAND	10	40.05	1469	2.26	1394		
95 x 296	8	313.23	4760	12.98	4814		
47.37%	6	4630.88	20489	281.19	22050		
Splice1	10	11.30	412	2.04	374		
287 x 3190	5	2316.70	7919	112.46	5763		
20.91%	2	TO	NA	112.46	5763		
Mushroom	5	23.65	547	1.96	551		
112 x 8124	1	5172.93	9934	202.43	9323		
18.75%	0.5	27656.11	23930	1073.44	21974		

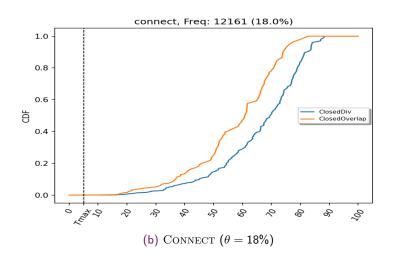
CPU times: ClosedDiversity vs. ClosedOverlap

Dataset	θ%	ClosedDiv	ERSITY	ClosedOverlap			
$\mathcal{T} \times \mathcal{I}$		CPU-Time (sec)	# Patterns	CPU-Time (sec)	# Patterns		
T40I10D100K	8	196.77	124	44.14	114		
942 × 100000	5	880.13	283	200.19	271		
4.20%	1	31213.08	7216	3523.54	5924		
Pumsb	40	31.33	3	2.67	3		
2113 × 49046	30	126.25	13	10.41	11		
3.50%	20	431.91	38	35.04	39		
T10I4D100K	5	2.26	10	0.62	10		
870 × 100000	1	1455.39	359	305.70	351		
1.16%	0.5	2910.10	606	645.35	595		
Retail	5	15.94	11	4.49	11		
16470 x 88162	1	864.30	104	206.57	103		
0.06%	0.4	12489.13	514	3500.13	503		

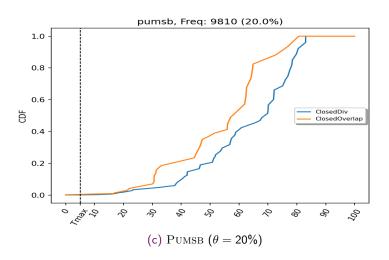
Diversity: CLOSEDDIVERSITY vs. ClosedOverlap



$\label{eq:closedDiversity} \textbf{Diversity} : ClosedOverlap$



$\label{eq:closedDiversity} \textbf{Diversity} : ClosedOverlap$



 ${\tt CLOSEDDIVERSITY}$ and ${\tt ClosedOverlap}$ global constraints work at the propagation level of the solver

Idea: Define dedicated new search strategies to orient the search towards diverse patterns

→ no modification of the model nor the solver's inner structure

Task: Given a history $\mathcal H$ of solutions (initially empty), the task is to mine new patterns P ensuring a minimum diversity according to a some History score

OrientedDeterministic strategy

A vector X of Boolean variables $(X_1,\ldots,X_{|\mathcal{I}|})$ for representing a pattern P

Definition (History score)

Given a pattern P being constructed, an item i whose associated variables X_i is uninstantiated, and a history $\mathcal H$ of solutions, we define the history score as

$$\max_{H\in\mathcal{H}}J_{\mathcal{V}}(P\cup\{i\},H)$$

The history score ensures a minimum diversity between $P \cup \{i\}$ and solutions of \mathcal{H}

Brunching heuristic: select the next uninstantiated variable $X_{i_{min}}$ that minimizes the score (a low Jaccard means a good diversity):

$$\begin{array}{l} i_{min} \leftarrow \underset{\substack{1 \leq i \leq |\mathcal{I}| \\ |\mathcal{D}(X_i)| = 2}}{\arg \min} \max_{H \in \mathcal{H}} J_{\mathcal{V}}(P \cup \{i\}, H) \end{array}$$

The search may be stuck in a local optimum, i.e. solutions will be searched repeatedly in the same space.

ORIENTEDRANDOM Strategy

Select the next uninstantiated variable according to some weight distribution

Definition (variable weight)

Let W be an array of size $|\mathcal{I}|$. Given a pattern P being constructed, an item i whose associated variables X_i is uninstantiated, and a history \mathcal{H} of solutions, we the define the weight of X_i as

$$W[i] = \frac{1}{\max_{H \in \mathcal{H}} J_{\mathcal{V}}(P \cup \{i\}, H) + \epsilon}$$

Instantiated variables are given a weight of 0

To bias the random distribution towards small values, we have to invert the computed history score

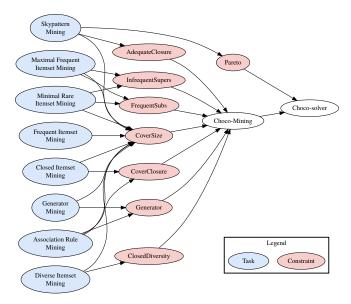
 $\boldsymbol{Brunching\ heuristic}$: the next uninstantiated variable is randomly chosen with respect to the weights in W

• Une nouvelle bibliothèque Choco-Mining¹ qui regroupe un ensemble de contraintes pour la fouille de motifs.

 Elle permet à un utilisateur intéressé de facilement réutiliser ces contraintes dans ses propres projets.

¹https://gitlab.com/chaver/choco-mining

Choco-Mining: A Java Library For Itemset Mining (Vernerey et al. JOSS 2023)



A new generic solution for mining diverse patterns

- Exploiting relaxations and search strategies
- Other diversity measures (entropy) ?

Exploiting Jaccard index within search strategies show improved diversity compared to ${\it ClosedDiversity}$