
Constraint Programming
for Diversity Pattern Set Mining

Samir LOUDNI
Join work with A. Hien, M. Douad, A. Zimmermann, N. Aribi, A. Ouali, Y. Lebbah

GT CAVIAR
08/04/2025



Data mining

... is ”the use of sophisticated data analysis tools to discover unknown,
valid patterns and relationships in large datasets”

Data mining:
Core of KDD
Search for regularities from
transaction databases
Pattern domain : item-sets,
sequences, graphs, etc.
examples including pattern mining,
clustering, association rules, etc.

g1 g2 g3 g4
s1 x x
s2 x x x
s3 x x
s4 x x x
s5 x x x

frequent pattern : g1g2
association rule : g1g2 → g3
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Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in I, listing
every itemset having a frequency above a given threshold θ ∈ N.

Input:
a1 a2 . . . an

o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

and a minimal frequency θ ∈ N.
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Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in I, listing
every itemset having a frequency above a given threshold θ ∈ N.

Output: every X ⊆ I such that there are at least θ objects having all attributes in X .
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Pattern flooding: Mining frequent itemsets

4 / 38



Pattern flooding: Mining top-k frequent itemsets
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Pattern flooding: Mining top-k frequent itemsets
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Redundancy

Too many patterns, unmanageable and
diversity not necessary assured

Find a set of patterns that is:
- small
- non-redundant

Several approaches for mining
non-redundant patterns :

- Mikis (Knobbe et al.,
ECML-PKDD’06)

- Piker (Bringmann et al., KIS 2009)
- Flexics (Dzyuba et al., DMKD 2017),
- CFTP (Boley et al., KDD 2012)

àExploiting CP for mining diverse set of patterns
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Constraint programming

A generic framework for solving combinatorial problems

A declarative description of the problem by a triplet (X ,D,C) where
- X = {x1, . . . , xn} is finite set of variables
- D = {D1, . . . ,Dn} is finite set of domains (a.k.a possible values) of variables
- C = {c1, . . . , ce} is a set of constraints restricting the values of variables xi

Resolution = Enumeration + Filtering

solution ≡ assignments on X satisfying all constraints of C
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Measuring redundancy

Exploiting similarity measure to compare pairs of patterns :

|A ∩ B|/min(|A|, |B|) (Overlap)

|A ∪ B| − |A ∩ B| (Hamming distance)

|A ∩ B|/|A|.|B| (Cosine similarity)

|A ∩ B|/|A ∪ B| (Jaccard similarity)

A

B
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Diversification problems

Definition (Hebrard et al., AAAI 2005)
Let k ≥ 2 be an integer, and S be a set of solutions.

The MaxDiverseKSet(k) problem is the problem of finding a subset S̃ of S of
size k such that for all S ⊆ S, |S| = k,

min
s1,s2∈̃S
s1 6=s2

JV(s1, s2) ≤ min
s1,s2∈S
s1 6=s2

JV(s1, s2).

Given a set S of previously found solutions (a history), the MostDistant(S)
problem is the problem of finding a solution s̃ ∈ S such that for all s ∈ S,

min
s′∈S

JV (̃s, s ′) ≤ min
s′∈S

JV(s, s ′).

- MaxDiverseKSet(k) can be seen as finding a set of k solutions minimizing
the pairwise Jaccard values.
- MostDistant aims at finding the most distant solution from the history of
solution ; can be seen as a greedy algorithm solving MaxDiverseKSet problem.
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First approximation of the MostDistant problem
(Hien et al., ECML-PKDD 2020 & Constraints 2024)

Definition (Maximum Diversity Constraint)
Let H be a history of patterns, jmax a bound on the maximum allowed Jaccard,
and P an itemset. The maximum diversity constraint ensures that P is diverse
w.r.t. H and Jmax .

div(P,H, jmax )⇔ ∀H ∈ H, JV(P,H) ≤ Jmax

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse
patterns.

Task : Given a history H of k pairwise diverse patterns (initially empty), the task
is to mine new patterns P such that div(P,H, jmax ) is satisfied.
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Anti-monotonicity of the maximum Jaccard constraint

The anti-monotonicity does not hold for the Maximum Jaccard constraint

- For H = {BE} and Jmax = 0.19, Jac(AE ,H) = 0.27 ≥ Jmax whereas
Jac(ACE ,H) = 0.147 ≤ Jmax . 10 / 38



Relaxations of the Jaccard constraint

(i) A lower bound LBJ , which allows to prune non-diverse patterns

LBJ(H,P) =
{

θ−|Vpr
H (P)|

|VD(H)|+|Vpr
H (P)| if (Vpr

H (P) < θ)
0 else

(ii) An upper bound UBJ to find patterns ensuring diversity

UBJ(H,P) = |VD(H) ∩ VD(P)|
|Vpr

H (P)|+ max{θ, |VD(H)| ∩ |VD(P)|}
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Jaccard lower and upper bounds

Monotonicity of LBJ : Let H ∈ H be an itemset. For any two patterns
Q ⊆ P, the relationship LBJ(P,H) ≥ LBJ(Q,H) holds.

à If LBJ(P,H) > Jmax ⇒ JV(P,H) > Jmax ⇒ P is not diverse
(any super-itemset P ′ ⊇ P will not be diverse)

Anti-monotonicity of UBJ : Let H ∈ H be an itemset. For any two patterns
P ⊆ Q, the relationship UBJ(P,H) ≥ UBJ(Q,H) holds.

à If UBJ(P,H) ≤ Jmax ⇒ JV(P,H) ≤ Jmax ⇒ P is diverse
(any super-itemset P ′ ⊇ P will also be diverse)

A new global constraint ClosedDiversityD,θ(X ,H, Jmax ) for mining
pairwise diverse patterns that exploits the two previous relaxations.

12 / 38



ClosedDiversityD,θ(X ,H, Jmax)
(A. Hien et al., Constraints 2024)

- Use a vector X of Boolean variables (X1, . . . ,X|I|) for representing item sets
- X + will denote the set of present items,

- ClosedDiversityD,θ(X ,H, Jmax ) holds if and only if :

(1) freq(X+) ≥ θ and X+ is closed à ClosedPatterns
(2) X+ is diverse, ∀H ∈ H, LBJ(X+,H) ≤ Jmax .

Two filtering rules : Let XDiv be the set of items filtered by (Rule #1)
1 remove 1 from dom(Xi ) if ∃H ∈ H s.t. LBJ(X + ∪ {i},H) > Jmax

2 remove 1 from dom(Xi ) if ∃ k ∈ XDiv s.t. cover(X + ∪ {i}) ⊆ cover(X + ∪ {k}),
then LBJ(X + ∪ {i},H) > LBJ(X + ∪ {k},H) > Jmax

Time complexity: O(n × (n ×m))
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Comparative Exploration of Extracted Pattern Landscapes
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False positives

ClosedDiversity ensures that ∀H ∈ H, LBJ(P,H) ≤ Jmax

LBJ(P,H) ≤ Jmax :
{

JV(P,H) ≤ Jmax
JV(P,H) > Jmax
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False positives

ClosedDiversity ensures that ∀H ∈ H, LBJ(P,H) ≤ Jmax

LBJ(P,H) ≤ Jmax :
{

JV(P,H) ≤ Jmax
JV(P,H) > Jmax ⇒ false positive
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False positives

ClosedDiversity ensures that ∀H ∈ H, LBJ(P,H) ≤ Jmax

LBJ(P,H) ≤ Jmax :
{

JV(P,H) ≤ Jmax
JV(P,H) > Jmax ⇒ false positive

Proposition : adding the Jaccard test before any update of H
à ClosedDiv+Jaccard
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Experiments

UCI datasets

Comparisons:
(1) ClosedP

(2) ClosedP+Jaccard

(3) ClosedDiv

(4) ClosedDiv+Jaccard

(5) FullCP

(6) Picker

(7) PatternsTeam

(8) Flexics (EFlexics et
GFlexics)

(9) Gibbs

(10) CFTP

Implementation: Choco solver, timeout = 24 hours
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Quality of diversification

Let a set of patterns H = {H1, . . . ,Hk}

CDFH(τ) = #{(i , j)|JV(Hi ,Hj) ≤ τ, 1 ≤ i < j ≤ k} · 2
k(k − 1)

àCumulative distribution function on the Jaccard indices of each pair of
patterns
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Quality of diversification : heuristic approaches
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Quality of diversification : heuristic approaches
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Quality of diversification : sampling approaches
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Quality of diversification : sampling approaches

0
Jm

ax 10 20 30 40 50 60 70 80 90 10
0

11
0

Pairwise Jaccard x 100

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

CD
F

ClosedDiv-Mincov
EFlexics
GFlexics
Gibbs 1000
Gibbs 10000
CFTP 2
CFTP 3

(d) splice1 (θ = 10%)

19 / 38



CPU times : sampling approaches
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Jaccard index vs. Overlap

P1 t1

t2

P2 t4

P3 t3

(e)

t4t2t1 t3

VD(P1) VD(P2) VD(P3)

(f)

Pairwise comparison Jaccard Index Overlap Coefficient
P1 vs. P2 |P1∩P2|

|P1∪P2| = 2
3 ≈ 0.66 |P1∩P2|

min(|P1|,|P2|) = 2
2 = 1.0

P1 vs. P3 |P1∩P3|
|P1∪P3| = 1

4 = 0.25 |P1∩P3|
min(|P1|,|P3|) = 1

2 = 0.5

Table: Comparison of Similarity Measures
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Sensitivity analysis of the Overlap coefficient
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VD(P1) VD(P1) ∩ VD(P2) VD(P2)

case# |VD(P1)| |VD(P2)| (J) (O)
case1 100 100 0.333 0.500
case2 110 90 0.333 0.556
case3 120 80 0.333 0.625
case4 130 70 0.333 0.714
case5 140 60 0.333 0.833
case6 150 50 0.333 1.0

àBy considering the proportion of the smaller set contained within the larger set,
the Overlap coefficient offers a more informative and nuanced measure of set
similarity.
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Anti-monotonicity of the Overlap Coefficient

1 2 3 4
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X
+ i
,H
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Overlap
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- For H = {AE}, X + = {A} ⊆ {A,C} ⊆ {A,C ,D} ⊆ {A,C ,D,E},
Overlap(A,H) = 1 ≥ Tmax whereas Overlap(AC ,H) = .33 ≤ Tmax .
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Relaxations of the overlap coefficient
(M. Douad et al., APIN 2025)

(i) A lower bound which allows to prune non-diverse patterns

LBOC (P, H) =
{

θ−|Vpr
H (P)|

min(|VD(P)|, |VD(H)|) if (Vpr
H (P) < θ)

0 else

(ii) An upper bound to find patterns ensuring diversity

UBOC (P, H) = min
(
|VD(P) ∩ VD(H)|

θ
, 1
)
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Overlap lower and upper bounds

Monotonicity of LBOC : Let H ∈ H be an itemset. For any two patterns
Q ⊆ P, the relationship LBOC (P, H) ≤ LBOC (Q, H) holds.

à If LBOC (P,H) > Jmax ⇒ JV(P,H) > Jmax ⇒ P is not diverse
(any super-itemset P ′ ⊇ P will not be diverse)

Anti-monotonicity of UBOC : Let H ∈ H be an itemset. For any two patterns
P ⊆ Q, the relationship UBOC (P, H) ≥ UBOC (Q, H) holds.

à If UBOC (P,H) ≤ Jmax ⇒ JV(P,H) ≤ Jmax ⇒ P is diverse
(any super-itemset P ′ ⊇ P will also be diverse)

A new global constraint OverlapDivD,θ(X ,H,Tmax ) for mining pairwise
diverse patterns that exploits the two previous relaxations.
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OverlapDivD,θ(X ,H, Tmax)
(A. Douad et al., APIN 2025)

- Use a vector X of Boolean variables (X1, . . . ,X|I|) for representing item sets

- X+ will denote the set of present items,

- OverlapDivD,θ(X ,H,Tmax ) holds if and only if :
X+ is diverse; ∀H ∈ H, LBOC (X+,H) ≤ Tmax

Two filtering rules : Let XDiv be the set of items filtered by (Rule #1)

1 /∈ Dom(Xi) iff
{
∃ H ∈ H s.t. LBOC(X+ ∪ {i},H) > Tmax (R1)
∃k ∈ XDiv s.t. VD(X+ ∪ {i}) ⊆ VD(X+ ∪ {k}) (R2)

Time complexity: O(n × (n ×m))
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A CP model for mining diverse closed and frequent itemsets

ClosedOverlapD,θ(X , c,Tmax ,H) ≡


OverlapDivD,θ(X ,Tmax ,H) (1)
CoverSizeD,θ(X , c) ∧ c ≥ θ (2)
CoverClosureD(X ) (3)

OverlapDiv: Enforces diversity by controlling the overlap between the
current itemset and the previously mined itemsets in H.
CoverSize (schaus et al., 2017): Ensures frequency by requiring that the
cover size of the itemset satisfies: FreqD(X ) ≥ θ.
CoverClosure: Guarantees closure by ensuring that the itemset is maximal
w.r.t. the frequency measure, i.e., Closfreq(X ) = X .
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PCA of Extracted Pattern Landscapes

(g) (h)
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Optimization model or mining k-diverse frequent itemsets

Both ClosedOverlap and ClosedDiversity are sensitive to order in
which patterns are explored à can significantly influence the output

Formulate the initial problem as an optimization one: à select the best
pattern set S∗ of size k maximizing some quality measure φ over all
subsets of P

Joint entropy measure as a quality measure:

Definition (Joint entropy of an itemset)
Let P = {i1, . . . , in} be an itemset and c = (c1, . . . , cn) ∈ {0, 1}n a tuple of binary
values. The joint entropy of P is given as

H(P) = −
∑

ci∈{0,1}n

p(i1 = c1, , . . . , in = cn) log2 p(i1 = c1, , . . . , in = cn) (1)
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Join entropy-based formulation for minimizing k-pattern set
redundancy

Each pattern Hi ∈ H is represented as a binary vector, within a |D| × |H|
matrix, indicating the transactions where Hi is present.

H = {ABCD,AE ,BE}

{A,B,C ,D} {A,E} {B,E}
0 0 1
0 0 0
0 0 0
1 1 1
1 0 0
0 0 0
0 1 0
0 1 0
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Join entropy-based formulation for minimizing k-pattern set
redundancy

The Entropy Computation exploits the binary vectors c ∈ {0, 1}k derived from
the binary matrix:

H(H) = −
∑

c∈{0,1}k

freq(H1 = c1, . . . ,Hk = ck)
|D|

log2( freq(H1 = c1, . . . ,Hk = ck)
|D|

)

Diversity reflects the variability or balance in the presence of patterns across
transactions:
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Join entropy-based formulation for minimizing k-pattern set
redundancy

The Entropy Computation exploits the binary vectors c ∈ {0, 1}k derived from
the binary matrix:

H(H) = −
∑

c∈{0,1}k

freq(H1 = c1, . . . ,Hk = ck)
|D|

log2( freq(H1 = c1, . . . ,Hk = ck)
|D|

)

Diversity reflects the variability or balance in the presence of patterns across
transactions:

- Pattern {A,B,C ,D}: Appears in 2 transactions (t4,t5)
- Pattern {A,E}: Appears in 3 transactions (t4,t7,t8)
- Pattern {B,E}: Appears in 2 transactions (t1,t4)
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Join entropy-based formulation for minimizing k-pattern set
redundancy

The Entropy Computation exploits the binary vectors c ∈ {0, 1}k derived from
the binary matrix:

H(H) = −
∑

c∈{0,1}k

freq(H1 = c1, . . . ,Hk = ck)
|D|

log2( freq(H1 = c1, . . . ,Hk = ck)
|D|

)

Diversity reflects the variability or balance in the presence of patterns across
transactions:

- If all patterns appear in all transactions, diversity is low because there
is no variability.

- If each pattern appears in a unique set of transactions, diversity is high.
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Join entropy-based formulation for minimizing k-pattern set
redundancy

The Entropy Computation exploits the binary vectors c ∈ {0, 1}k derived from
the binary matrix:

H(H) = −
∑

c∈{0,1}k

freq(H1 = c1, . . . ,Hk = ck)
|D|

log2( freq(H1 = c1, . . . ,Hk = ck)
|D|

)

Unique bit codes in this matrix are: {001, 000, 111, 100, 010}

Occurrences: 001: 1, 000: 3, 111: 1, 100: 1, 010: 2

P(001) = 1
8 , P(000) = 3

8 , P(111) = 1
8 , P(100) = 1

8 , P(010) = 2
8 = 1

4

The joint entropy H is:

H(H) = −
(
1
8 log2

1
8 + 3

8 log2
3
8 + 1

8 log2
1
8 + 1

8 log2
1
8 + 2

8 log2
2
8

)
= 2.1556 bits
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Join entropy-based formulation for minimizing k-pattern set
redundancy

Note that the joint entropy is always between 0 and k.
It is maximal when patterns are fully uncorrelated and uniformly
distributed.
For 3 binary variables, there are 23 = 8 possible combinations.
If each occurs exactly once, then:

H(P1,P2,P3) = −
( 8∑

i=1

1
8 log2

1
8

)

= −
(
8× 1

8 × (−3)
)

= 3 bits
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Join entropy-based formulation for minimizing k-pattern set
redundancy

A Greedy Optimization Approach: Iteratively integrates patterns with
the highest entropy contribution.

{A B C D} {A E} {B E}
0 0 1
0 0 0
0 0 0
1 1 1
1 0 0
0 0 0
0 1 0
0 1 0

Joint Entropy = 2.1556

→

{E} {A E} {B E}
1 0 1
1 0 0
0 0 0
1 1 1
0 0 0
0 0 0
1 1 0
1 1 0

Joint Entropy = 2.1556

→

{A B C D} {E} {B E}
0 1 1
0 1 0
0 0 0
1 1 1
1 0 0
0 0 0
0 1 0
0 1 0

Joint Entropy = 2.1556

→

{A B C D} {A E} {E}
0 0 1
0 0 1
0 0 0
1 1 1
1 0 0
0 0 0
0 1 1
0 1 1

Joint Entropy = 2.25

Figure: Maximizing Joint Entropy: finding the best k-pattern set through
candidate itemset replacement
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CPU times: ClosedDiversity vs. ClosedOverlap

Dataset
T x I θ%

ClosedDiversity ClosedOverlap

CPU-Time (sec) # Patterns CPU-Time (sec) # Patterns

Chess
75 x 3196
49.33%

20 1.57 64 0.35 56
15 12.36 237 1.00 224
10 408.19 1621 15.62 1597

Kr-vs-kp
73 x 3196
49.32 %

30 0.24 13 0.11 10
20 1.41 63 0.35 57
10 368.50 1608 15.30 1570

Connect
129 x 67557

33.33%

30 6.92 18 0.59 11
18 134.91 140 5.76 104
15 492.53 296 17.35 251

Heart-cleveland
95 x 296
47.37%

10 40.05 1469 2.26 1394
8 313.23 4760 12.98 4814
6 4630.88 20489 281.19 22050

Splice1
287 x 3190
20.91%

10 11.30 412 2.04 374
5 2316.70 7919 112.46 5763
2 TO NA 112.46 5763

Mushroom
112 x 8124
18.75%

5 23.65 547 1.96 551
1 5172.93 9934 202.43 9323
0.5 27656.11 23930 1073.44 21974

31 / 38



CPU times: ClosedDiversity vs. ClosedOverlap

Dataset
T x I θ%

ClosedDiversity ClosedOverlap

CPU-Time (sec) # Patterns CPU-Time (sec) # Patterns

T40I10D100K
942 x 100000

4.20%

8 196.77 124 44.14 114
5 880.13 283 200.19 271
1 31213.08 7216 3523.54 5924

Pumsb
2113 x 49046

3.50%

40 31.33 3 2.67 3
30 126.25 13 10.41 11
20 431.91 38 35.04 39

T10I4D100K
870 x 100000

1.16%

5 2.26 10 0.62 10
1 1455.39 359 305.70 351
0.5 2910.10 606 645.35 595

Retail
16470 x 88162

0.06%

5 15.94 11 4.49 11
1 864.30 104 206.57 103
0.4 12489.13 514 3500.13 503
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Diversity : ClosedDiversity vs. ClosedOverlap

(a) Hepatitis (θ = 30%)
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Diversity : ClosedDiversity vs. ClosedOverlap

(b) Connect (θ = 18%)
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Diversity : ClosedDiversity vs. ClosedOverlap

(c) Pumsb (θ = 20%)
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Search strategies for MostDistant problem
(M. Vavrille et al., 2023)

ClosedDiversity and ClosedOverlap global constraints work at the
propagation level of the solver

Idea: Define dedicated new search strategies to orient the search towards diverse
patterns à no modification of the model nor the solver’s inner structure

Task : Given a history H of solutions (initially empty), the task is to mine new
patterns P ensuring a minimum diversity according to a some History score
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OrientedDeterministic strategy

A vector X of Boolean variables (X1, . . . ,X|I|) for representing a pattern P

Definition (History score)
Given a pattern P being constructed, an item i whose associated variables Xi is
uninstantiated, and a history H of solutions, we define the history score as

max
H∈H

JV(P ∪ {i},H)

The history score ensures a minimum diversity between P ∪ {i} and solutions of H

Brunching heuristic : select the next uninstantiated variable Ximin that minimizes the
score (a low Jaccard means a good diversity):

imin ← arg min
1≤i≤|I|
|D(Xi )|=2

max
H∈H

JV(P ∪ {i},H)

àThe search may be stuck in a local optimum, i.e. solutions will be searched repeatedly
in the same space.
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OrientedRandom Strategy

Select the next uninstantiated variable according to some weight distribution

Definition (variable weight)
Let W be an array of size |I|. Given a pattern P being constructed, an item i whose
associated variables Xi is uninstantiated, and a history H of solutions, we the define the
weight of Xi as

W [i ] = 1
max
H∈H

JV(P ∪ {i},H) + ε

Instantiated variables are given a weight of 0

To bias the random distribution towards small values, we have to invert the computed
history score

Brunching heuristic : the next uninstantiated variable is randomly chosen with respect
to the weights in W
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Choco-Mining: A Java Library For Itemset Mining
(Vernerey et al. JOSS 2023)

Une nouvelle bibliothèque Choco-Mining1 qui regroupe un ensemble
de contraintes pour la fouille de motifs.

Elle permet à un utilisateur intéressé de facilement réutiliser ces
contraintes dans ses propres projets.

1https://gitlab.com/chaver/choco-mining
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Choco-Mining: A Java Library For Itemset Mining
(Vernerey et al. JOSS 2023)

Choco-solver

Choco-Mining

CoverSize

CoverClosure

AdequateClosure

FrequentSubs

InfrequentSupers

Generator

ClosedDiversity

Pareto

Frequent Itemset
Mining

Closed Itemset
Mining

Skypattern
Mining

Maximal Frequent
Itemset Mining

Minimal Rare
Itemset Mining

Generator
Mining

Association Rule
Mining

Diverse Itemset
Mining

Legend

ConstraintTask

37 / 38



Summary

A new generic solution for mining diverse patterns
Exploiting relaxations and search strategies
Other diversity measures (entropy) ?

Exploiting Jaccard index within search strategies show improved diversity
compared to ClosedDiversity
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