Constraint-based Pattern Sampling

Arnaud Soulet Université de Tours, LIFAT, Blois

8^{ème} journée CAVIAR 8 avril 2025

What is it? Constraint-based Pattern Sampling

Arnaud Soulet Université de Tours, LIFAT, Blois

8^{ème} journée CAVIAR 8 avril 2025

Frequent pattern mining

[Agrawal et al., 93; Mannila and Toivonen, 97]

7	_
_	J

Tid	Items												
t1	D		G	Н									
t2	С	F	G	Н									
t3	ABCDE	F	G	Н									
t4	В Е	F	G	Н									
t5	CDE	F											

Itemset **FGH** with $freq(FGH, \mathcal{D}) = 3$

Discovering relevant local correlations in itemset language $\mathcal{L}=2^{\{A,B,C,D,E,F,G,H\}}$ considering the dataset \mathcal{D}

Drawbacks of pattern mining:

- 1. Long response time
- 2. Threshold definition of constraints: $freq(X, \mathcal{D}) \ge \gamma$
- 3. Overwhelming number of mined patterns

Pattern sampling with frequency:

[Al Hasan et al., 09;Boley et al., 11]

				,	\mathcal{D}				
Tid				It	em	S			
t1				D			G	Н	
t2			С			F	G	Н	
t3	A	В	C	D	Ε	F	G	Н	
t4		В			Ε	F	G	Н	
t5			C	D	Ε	F			Ĺ
	-								<u> </u>
				k	=	3		S	
								FG	iH
								Α	
								CD)

Each pattern $X \in \mathcal{L}$ is drawn with a probability proportional to its frequency $freq(X, \mathcal{D})$.

FGH is 3 times more likely to be drawn than A because its frequency is 3 times greater.

 \mathcal{T}

Tid		Items											
t1				D			G	Н					
t2			С			F	G	Н					
t3	A	В	С	D	Ε	F	G	Н					
t4		В			Ε	F	G	Н					
t5			С	D	Ε	F							

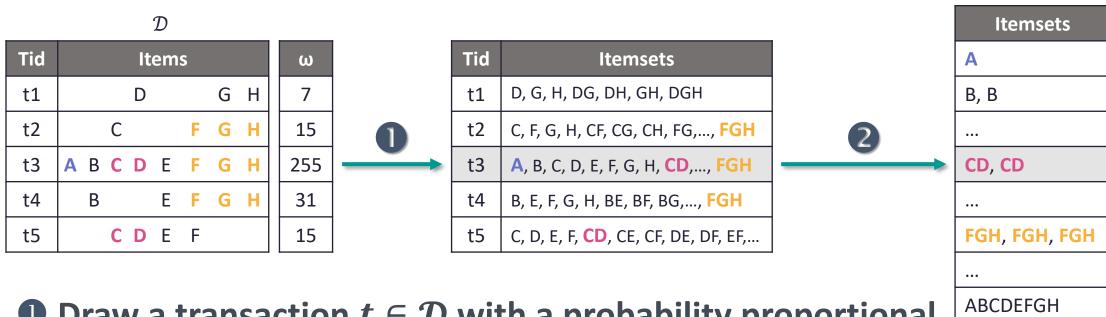
How do you generate a sample without extracting all the frequent patterns?

 \mathcal{D} Tid Tid **Itemsets** Items ω D, G, H, DG, DH, GH, DGH GHt1 t1 C t2 F G H 15 C, F, G, H, CF, CG, CH, FG,..., FGH ABCDE 255 t3 **A**, B, C, D, E, F, G, H, **CD**,..., **FGH** F F G H **†**4 31 t4 B, E, F, G, H, BE, BF, BG,..., **FGH** CDEF t5 15 C, D, E, F, CD, CE, CF, DE, DF, EF,...

O Calculate ω the number of itemsets per transaction

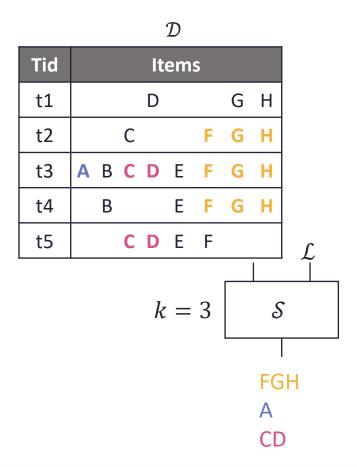
 \mathcal{D} Tid Tid Items **Itemsets** ω D, G, H, DG, DH, GH, DGH GHt1 t1 F G H 15 t2 C, F, G, H, CF, CG, CH, FG,..., FGH ABCDEF 255 t3 **A**, B, C, D, E, F, G, H, **CD**,..., **FGH** F F G H t4 31 B, E, F, G, H, BE, BF, BG,..., **FGH** CDEF t5 15 C, D, E, F, CD, CE, CF, DE, DF, EF,...

1 Draw a transaction $t \in \mathcal{D}$ with a probability proportional to the number of itemsets ω contained in t



- **1** Draw a transaction $t \in \mathcal{D}$ with a probability proportional to the number of itemsets ω contained in t

Pattern sampling with frequency: Interests for user-centric pattern mining



- □ Controlled size of the pattern sample
- Very fast extraction with the two-step random procedure
- Useful profiling of the dataset for different mining processes:
 - Feature construction [Boley et al., 11]
 - Outlier detection [Giacometti et al., 16]
 - Interactive pattern mining [Dzyuba et al., 16;Hien et al., 23]

Why???? Constraint-based Pattern Sampling

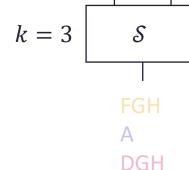
Arnaud Soulet Université de Tours, LIFAT, Blois

8^{ème} journée CAVIAR 8 avril 2025

Pattern sampling with frequency: Curse of the long tail [Diop et al., 2018]

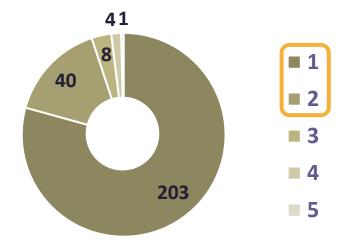
 \mathcal{D}

Tid	Items											
t1			D			G	Н					
t2		С			F	G	Н					
t3	A B	C	D	Ε	F	G	Н					
t4	В			Ε	F	G	Н					
t5		С	D	Ε	F							
							I					



Despite the draw bias, the sampling focuses on non-frequent patterns:

Number of patterns per frequency



86% of the drawn patterns have a frequency of less than 2!

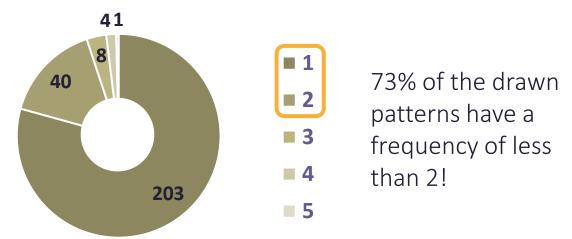
Pattern sampling with frequency: Curse of the long tail [Diop et al., 2018]

 \mathcal{D}

Tid				lt	em	S			
t1				D			G	Н	
t2			С			F	G	Н	
t3	Α	В	С	D	Ε	F	G	Н	
t4		В			Ε	F	G	Н	
t5			С	D	Ε	F			Ĺ
									$\tilde{1}$
				k	=	3		S	
								FG	iH
								Α	
								DO	БH

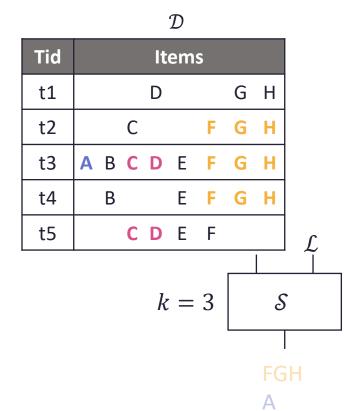
Despite the draw bias, the sampling focuses on non-frequent patterns:

Number of patterns per frequency



Bias amplified with $freq(x, \mathcal{D})^2$!!!

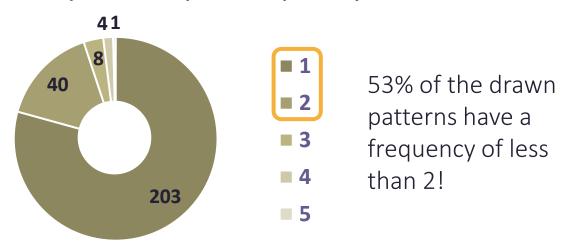
Pattern sampling with frequency: Curse of the long tail [Diop et al., 2018]



DGH

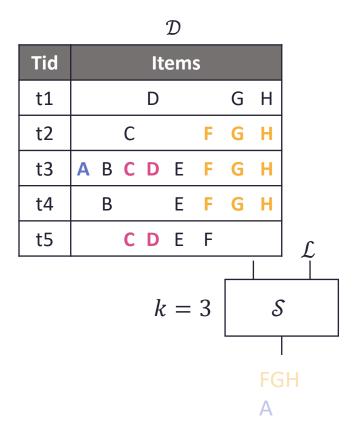
Despite the draw bias, the sampling focuses on non-frequent patterns:

Number of patterns per frequency



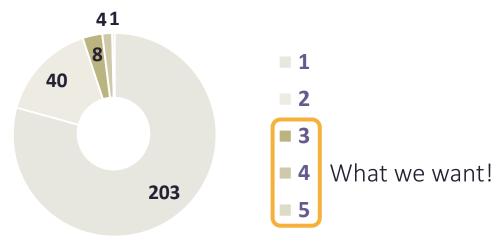
Bias amplified with $freq(x, \mathcal{D})^3$!!!!!!

Pattern sampling with frequency: Curse of the long tail [Diop et al., 2018]



Despite the draw bias, the sampling focuses on non-frequent patterns :

Number of patterns per frequency



Our goal: Pattern sampling with constraint for avoiding non-frequent itemsets

Short Pattern Sampling

Arnaud Soulet Université de Tours, LIFAT, Blois

8^{ème} journée CAVIAR 8 avril 2025

[Diop et al., 2018]

	_	_	
c	1	7	
	•	•	
4	,	J	

length

Tid	Items											
t1		D			G	Н						
t2	С			F	G	Н						
t3	A B C	D	Ε	F	G	Н						
t4	В		Ε	F	G	Н						
t5	С	D	Ε	F								

- □ **Key idea:** short patterns are more frequent
- → Maximum length constraint

[Diop et al., 2018]

	${\cal D}$	
Tid	Items	ω
t1	D G H	7
t2	C F G H	14
t3	A B C D E F G H	92
t4	B E F G H	25
t5	C D E F	14

$$length(X) \leq 3$$

 \odot Calculate ω the number of itemsets per transaction and ρ the number of itemsets per transaction and per length

[Diop et al., 2018]

	$\mathcal D$					ρ		
Tid	Item	S	ω		Tid	len.=1	len.=2	len.=3
t1	D	G H	7		t1	3 (D, G, H)	3 (DG, DH, GH)	1 (DGH)
t2	С	F G H	14		t2	4	6	4 (FGH)
t3	A B C D E	F G H	92	\longrightarrow	t3	8 (A)	28 (CD)	56 (ғдн)
t4	B E	F G H	25		t4	5	10	10 (ғдн)
t5	C D E	F	14		t5	4	6 (CD)	4

1 Draw a transaction $t \in \mathcal{D}$ w.r.t ω

[Diop et al., 2018]

	\mathcal{D}						ρ	2
Tid	Item	ıs	ω		Tid	len.=1	len.=2	len.=3
t1	D	G H	7		t1	3 (D, G, H)	3 (DG, DH, GH)	1 (DGH)
t2	С	F G H	14	0	t2	4	6	4 (FGH)
t3	A B C D E	F G H	92	\longrightarrow	t3	8 (A)	28 (CD)	56 (<mark>ғ</mark> дн)
t4	B E	F G H	25		t4	5	10	10 (FGH)
t5	C D E	F	14		t5	4	6 (CD)	4

- **1** Draw a transaction $t \in \mathcal{D}$ w.r.t ω
- $oldsymbol{2}$ Draw a length $oldsymbol{l}$ w.r.t $oldsymbol{\rho}$

[Diop et al., 2018]

	\mathcal{D}					_			ρ	2	_	Itemsets
Tid	Item	IS			ω		Tid	len.=1	len.=2	len.=3		Α
t1	D		G	Н	7		t1	3 (D, G, H)	3 (DG, DH, GH)	1 (DGH)		В, В
t2	С	F	G	Н	14	0	t2	4	6	4 (FGH)	3	
t3	A B C D E	F	G	Н	92	\longrightarrow	t3	8 (A)	28 (CD)	56 (FGH)	\longrightarrow	CD, CD
t4	B E	F	G	Н	25		t4	5	10	10 (FGH)		
t5	C D E	F			14		t5	4	6 (CD)	4		FGH, FGH, FGH

- 2 Draw a length l w.r.t ρ
- 2 Draw uniformly an itemset of length *l* in *t*

[Diop et al., 2018]

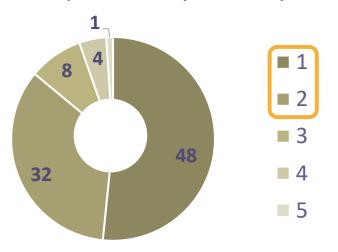
 \mathcal{D}

Tid	Iten	าร
t1	D	G H
t2	С	F G H
t3	A B C D E	F G H
t4	В Е	F G H
t5	C D E	F

length

Despite the length constraint ($length(X) \le 3$), the sampling focuses on non-frequent patterns :

Number of patterns per frequency



73% of the drawn patterns have a frequency of less than 2!

Frequent Pattern Sampling

Arnaud Soulet Université de Tours, LIFAT, Blois

8^{ème} journée CAVIAR 8 avril 2025

Challenge of frequent pattern sampling

 \mathcal{D}

Tid		Items							
t1				D			G	Н	
t2			С			F	G	Н	
t3	Α	В	С	D	Ε	F	G	Н	
t4		В			Ε	F	G	Н	
t5			С	D	Ε	F			

- ✓ Stochastic methods [Al Hasan et al., 08]
- ✓ Constraint programming [Dzyuba et al., 16]

Possible to push constraints but poor efficiency

- ➤ Multi-step random procedure [Boley et al., 11]
- Constraint-based multi-step random procedure
 - ✓ Syntactic constraints can be pushed into the language \mathcal{L} [Diop et al., 18]
 - **✗** Frequency-based constraint

How to push the frequency constraint into the sampling procedure?

[Bonchi et al., 03]

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

[El-Hajj et Zaiane, 03]

COFI-tree Mining: A New Approach to Pattern Growth with Reduced Candidacy Generation

Mohammad El-Hajj
Department of Computing Science
University of Alberta Edmonton, AB, Canada
mohammad@cs.ualberta.ca

Osmar R. Zaïane
Department of Computing Science
University of Alberta Edmonton, AB, Canada
zaiane@cs.ualberta.ca

Abstract

Existing association rule mining algorithms suffer from many problems when mining massive transactional datasets. Some of these major problems are: (1) the repetitive I/O disk scans, (2) the huge computation involved during the candidacy generation, and (3) the high memory dependency. This paper presents the implementation of our frequent itemset mining algorithm, COFI, which achieves its efficiency by applying four new ideas. First, it can mine using a compact memory based data structures. Second, for each frequent item assigned, a relatively small independent tree is built summarizing co-occurrences. Third, clever pruning reduces the search space drastically. Finally, a simple and non-recursive mining process reduces the memory requirements as minimum candidacy generation and counting is needed to generate all relevant frequent patterns.

posed method uses a pruning technique that dramatically saves the memory space. These relatively small trees are constructed based on a memory-based structure called FP-Trees [11]. This data structure is studied in detail in the following sections. In short, we introduced in [8] the COFI-tree stucture and an algorithm to mine it. In [7] we presented a disk based data structure, inverted matrix, that replaces the memory-based FP-tree and scales the interactive frequent pattern mining significantly. Our contributions in this paper are the introduction of a clever pruning technique based on an interesting property drawn from our top-down approach, and some implementation tricks and issues. We included the pruning in the algorithm of building the tree so that the pruning is done on the fly.

1.1 Problem Statement

The problem of mining association rules over market

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

¹ Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it

² ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it

³ Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Using pre-processing on the dataset for decreasing the search space [Bonchi et al., 03]

□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \ge 3$
- Monotone constraint : $length(X) \ge 4$

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \geq 3$
- Monotone constraint : $length(X) \ge 4$

Tid				lt	em	S		
t1				D			G	Н
t2			С			F	G	Н
t3	A	В	С	D	Ε	F	G	Н
t4		В			Ε	F	G	Н
t5			С	D	Е	F		

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \ge 3$
- Monotone constraint : $length(X) \ge 4$

 \mathcal{D}

Tid				lt	em	S		
t1				D			G	Н
t2			С			F	G	Н
t3	A	В	С	D	Ε	F	G	Н
t4		В			Ε	F	G	Н
t5			С	D	Е	F		

27

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \ge 3$
- Monotone constraint : $length(X) \ge 4$

Tid	lten	ns
t1	D	G H
t2	С	F G H
t3	A B C D E	F G H
t4	В Е	F G H
t5	C D E	F

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Recursive reduction

Journée CAVIAR - 8/04/2025

- Anti-monotone constraint : $freq(X, \mathcal{D}) \ge 3$
- Monotone constraint : $length(X) \ge 4$

Tid	Item	S		
t1	D		G	Н
t2	С	F	G	Н
t3	A B C D E	F	G	Н
t4	B E	F	G	Н
t5	C D E	F		

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \geq 3$
- Monotone constraint : $length(X) \ge 4$

Tid	ltem	S		
t1	D		G	Н
t2	С	F	G	Н
t3	A B C D E	F	G	Н
t4	B E	F	G	Н
t5	C D E	F		

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Francesco Bonchi^{1,2,3}, Fosca Giannotti^{1,2}, Alessio Mazzanti^{1,3}, and Dino Pedreschi^{1,3}

1 Pisa KDD Laboratory*
http://www-kdd.cnuce.cnr.it
2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it
3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy
{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been considered harder to push in the computation and less effective in pruning the search space. In this paper, we show that this prejudice is ill founded and introduce ExAnte, a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained frequent pattern mining. Experimental results show a reduction of orders of magnitude, thus enabling a much easier mining task. ExAnte can be used as a pre-processor with any constrained pattern mining algorithm.

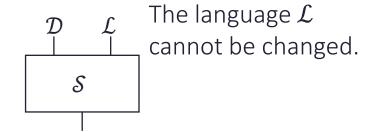
□ Recursive reduction

- Anti-monotone constraint : $freq(X, \mathcal{D}) \ge 3$
- Monotone constraint : $length(X) \ge 4$

Tid	Item	S		
t1	D		G	Н
t2	С	F	G	Н
t3	A B C D E	F	G	Н
t4	B E	F	G	Н
t5	C D E	F		

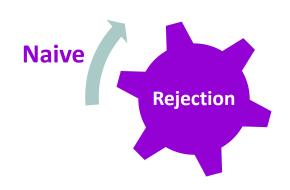
Key ideas

Benefiting from existing pattern sampling methods

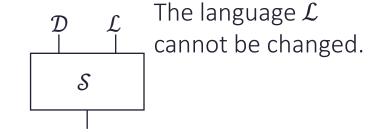


32

Key ideas

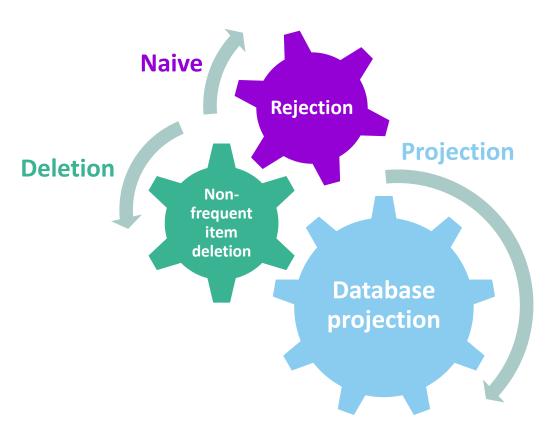


Benefiting from existing pattern sampling methods

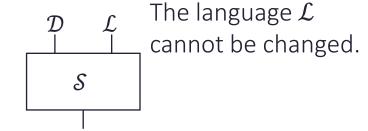


• Filtering the output: rejection step

Key ideas



Benefiting from existing pattern sampling methods



- Filtering the output: rejection step
- **2** Filtering the dataset \mathcal{D} : deletion + projection

34

Naive method: sampling with rejection (1)

 \mathcal{D}

Tid	Items								
t1			G	Н					
t2			С			F	G	Н	
t3	Α	В	С	D	Ε	F	G	Н	
t4		В			Ε	F	G	Н	
t5			С	D	Е	F			

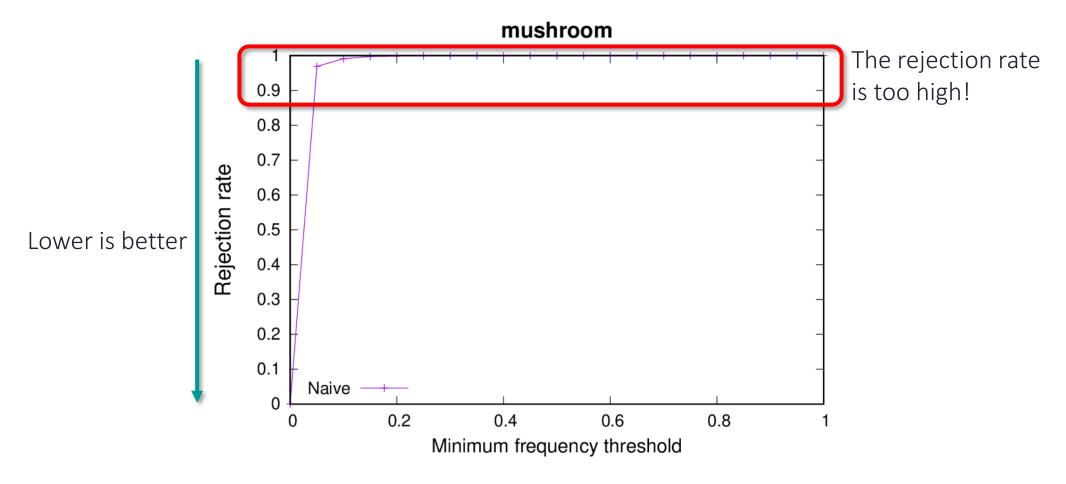
FGH (3), **A** (1), **CD** (2),...

Principle:

- Draw a pattern
- 2. Compute its frequency
- Reject it if its frequency is less than γ

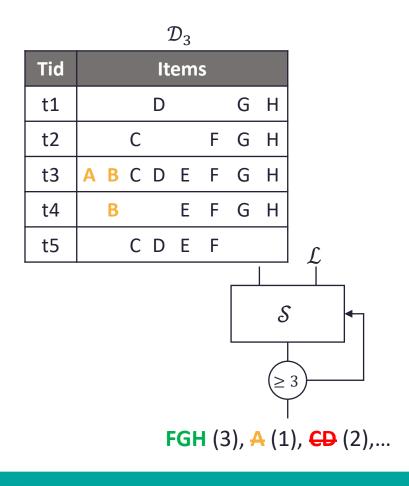
Rejection rate with $\gamma = 3:86\%$

Naive method: sampling with rejection (2)



Naive method does not work.

Deletion method: discarding non-frequent items (1)



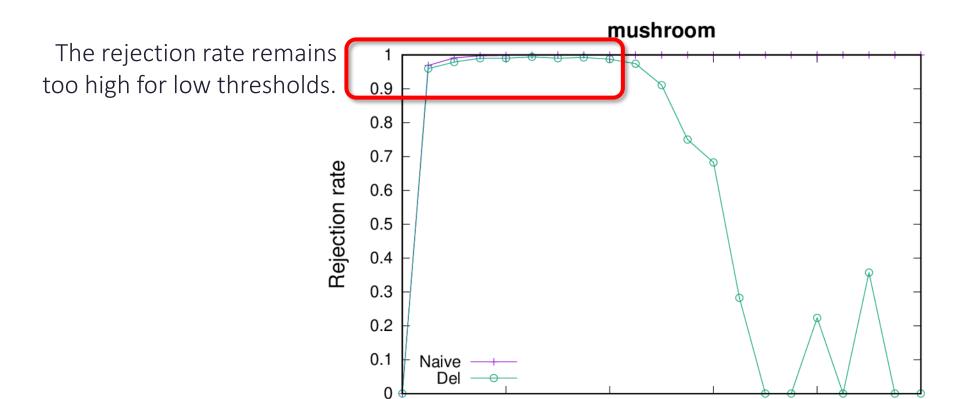
Principle: Delete all the non-frequent items (and then, all the itemsets containing at least one non frequent item)

Deletion of A → AC, AD, ACD,...

Rejection rate with $\gamma = 3:86\% \rightarrow 52\%$

37

Deletion method: discarding non-frequent items (2)



0.2

How can this approach be generalized to non-frequent item pairs?

Minimum frequency threshold

0.6

0.8

0.4

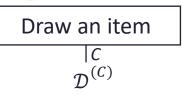
 $\mathcal{D}^{(C)}$

	Tid	Items								
	t1		D			G	Н			
•	t2	С			F	G	Н			
	t3	АВС	D	Ε	F	G	Н			
	t4	В		Е	F	G	Н			
	t5	С	D	Е	F					
,			>	C						

Projected database for the item *C* (considering the lexicographic order)

Projected database for the item *i*:

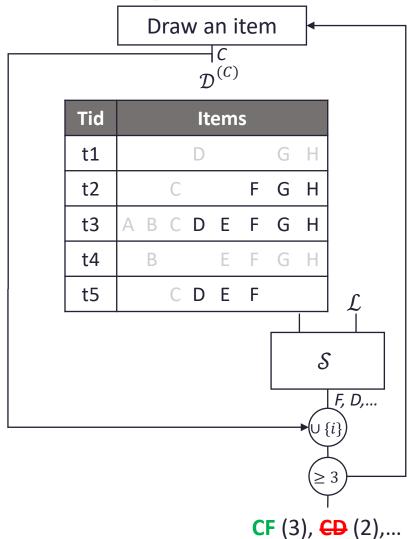
It contains only the transactions where the item i occurs and the items greater than i.



Tid									
t1				D			G	Н	
t2			С			F	G	Н	
t3	А	В	С	D	Ε	F	G	Н	
t4		В			Е	F	G	Н	
t5			С	D	Ε	F			\mathcal{L}
								S	
									F, D,

Principle:

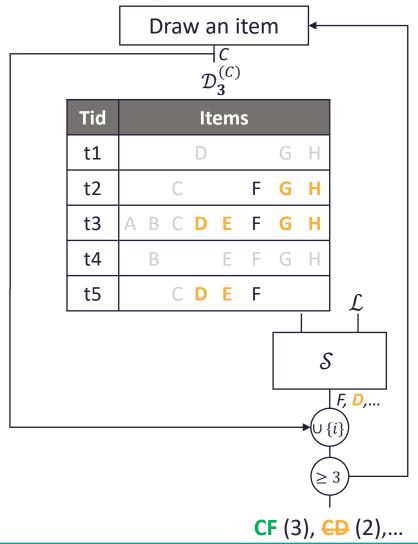
- 1. Draw the first item i proportionally to $\omega(i)$
- Sample an itemset Y in the projected dataset $\mathcal{D}^{(i)}$



Principle:

- Draw the first item i proportionally to $\omega(i)$
- Sample an itemset Y in the projected dataset $\mathcal{D}^{(i)}$
- Return the pattern $\{i\} \cup Y$ (if its fequency $\geq \gamma$)

Rejection rate with $\gamma = 3:86\% \rightarrow 52\% \rightarrow 52\%$



Principle:

- Draw the first item i proportionally to $\omega(i)$
- Sample an itemset Y in the projected dataset $\mathcal{D}_{\gamma}^{(i)}$ (with deletion!)
- Return the pattern $\{i\} \cup Y$ (if its fequency $\geq \gamma$)

Rejection rate with $\gamma = 3:86\% \rightarrow 52\% \rightarrow 0\%$

Tid	Items									
t1				D			G	Н		
t2			С			F	G	Н		
t3	А	В	С	D	Ε	F	G	Н		
t4		В			Е	F	G	Н		
t5			С	D	Ε	F				

$$\omega(C) = 6$$
 occurrences

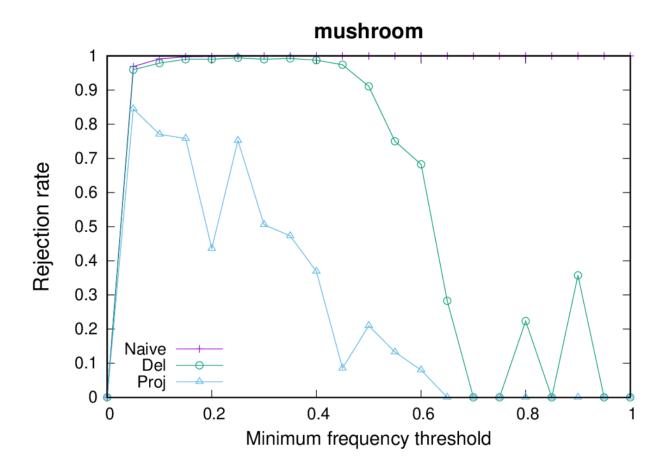
Tid	Items										
t1			G	Н							
t2			C			F	G	\vdash			
t3	А	В	С	D	Ε	F	G	Н			
t4		В			Е	F	G	Н			
t5			С	D	Ε	F					

$$\omega(C) = 6$$
 occurrences $\omega(D) = 3$ occurrences $\omega(E) = 6$ occurrences

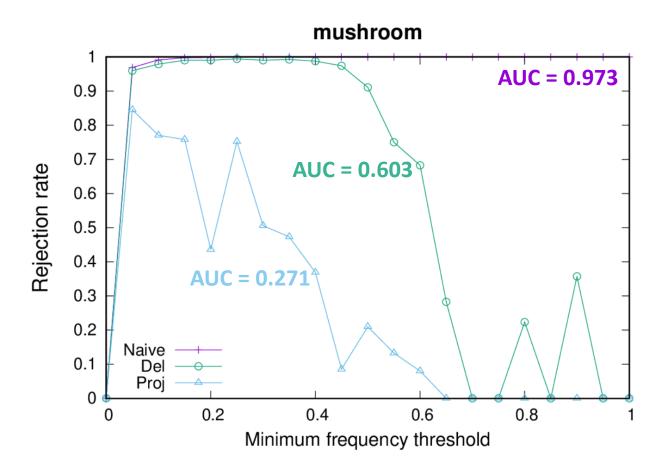
Tid	Items										
t1				D			G	Н			
t2			С			F	G	Н			
t3	А	В	С	D	Е	F	G	Н			
t4		В			Е	F	G	Н			
t5			С	D	Е	F					

$$\omega(E)=$$
 6 occurrences

Example for $\mathcal{D}_3^{(C)}$: \emptyset and F in t2 for leading to C and CF (idem for t3 and t5)

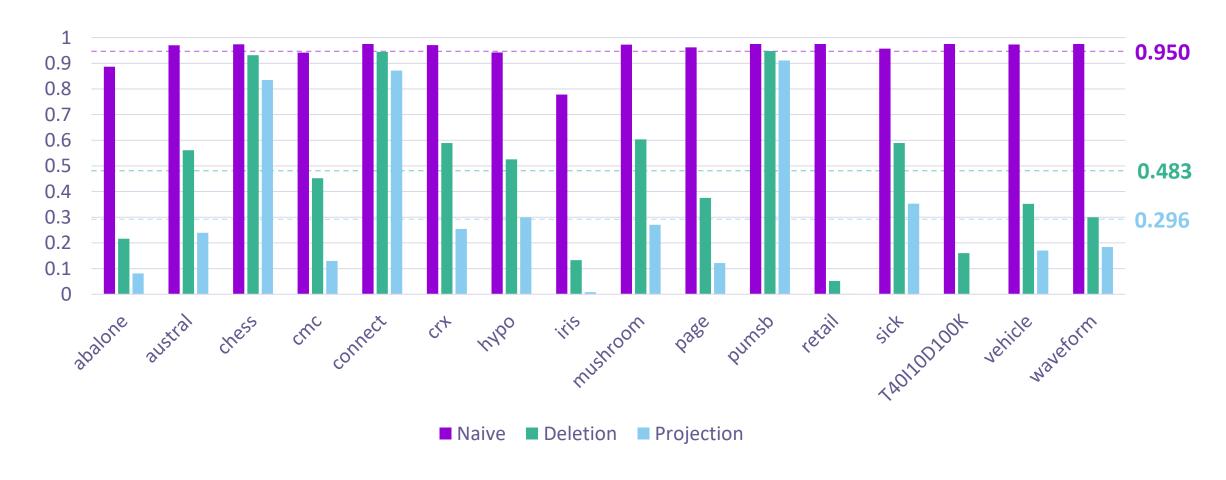


Projection method works well for any threshold.



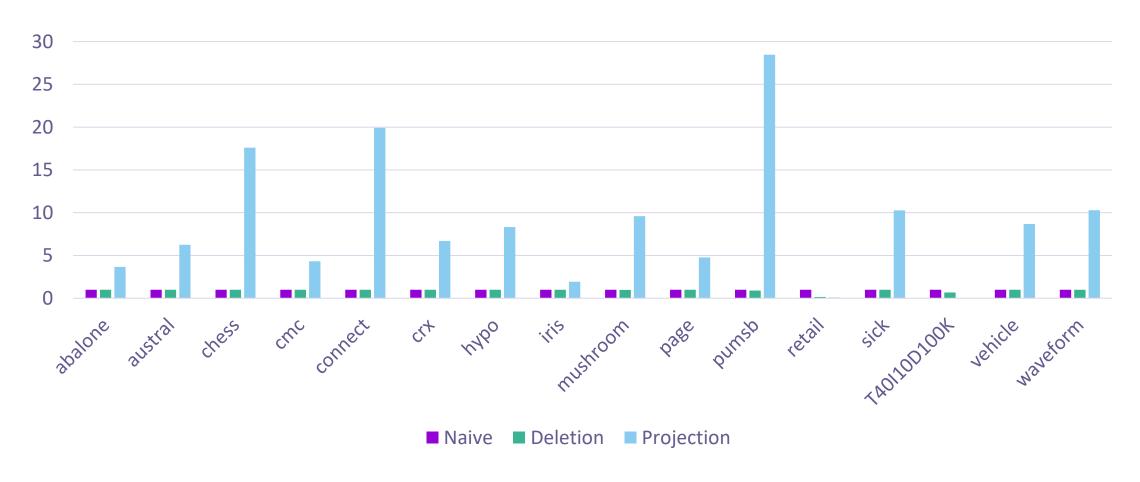
Projection method works well for any threshold.

AUC of rejection rates



Projection method works well for any threshold and any dataset.

Storage of projected datasets (worst case)



Projection method requires more data storage (x30).

Conclusion

□ Lesson 1: Complementary of sampling and constraints

- Sampling : Controlled number of patterns + fast
- Constraint : Elimination of non-relevant patterns

□ Lesson 2: Syntactic constraints can be pushed into sampling

- Not so hard to apply
- Maximum length constraint not so efficient for avoiding the curse of the long tail

□ Lesson 3: Syntactic constraints can be derived from non-syntactic constraints

- Generic: Any frequent pattern sampling method can be reused
- Efficient: Low rejection ratio at the cost of extra storage

