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* Question: How does the user write down the constraints of a problem?
* Limitations: modelling constraint networks require a fair expertise
[Freuder99, Frisch et al.05, Smith06]

* Need: Simple way to build constraint model = Modeller-assistant
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* Question: How does the user write down the constraints of a problem?
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* Need: Simple way to build constraint model = Modeller-assistant
* How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)
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* Need: Simple way to build constraint model = Modeller-assistant
* How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)



Version Space Learning (Overview) [Mitchell82]

Let X=x,,..,X, a set of attributes of domains D=D,,..,D,

A concept is a Boolean function f : X — {0, 1}
? f(xi)=0 => xiis a negative instance

72 f(xj)=1=> xjis a positive instance

Given a set of hypothesis H, any subset of H represents a version
space

A concept to learn is the set of positive instances that can be
represented by a version space



Version Space Learning (Overview) [Mitchell82]
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Constraint Acquisition as Version Space Learning
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Constraint Acquisition Problem

Inputs:
2 (X,D): Vocabulary
2 [ Constraint language

=>» B: Bias (constraints/hypothesis)
# C;: Target Network (concept to learn) e G
72 (E*EY): training set

Output: O\

CL: Learned network such that:

C Convergence Pb: A

[(CL C B)A(Vei € BT e; € 50l(CL)) A (Ve € B~ e & s0l(Cr)) |

\ coNP-complete [Constraint Acquisition, AlJ17] Y,




I' = {<7:}
B = {.CBZ < Zj,T; = JZj,V?;,j}
Cr ={x1 = 23,71 < T2}

Cr ={z1 = 3,23 < T2}

<




State of the art

Matchmaker agents [Freuder and Wallace wAAAI97]

CONACQ

.

N NN

K = (—x1 A —x2 A —23) /\I(ZIZ4 V x5 V Tg \/:1:7)l. .

Argument based CONACQ [Friedrich et al.09]

SAT-Based constraint acquisition

Bidirectional search using Membership queries
Conacgl.0 (passive learning) [Bessiere et al. ECMLO5]
Conacg2.0 (active learning) [Bessiere et al. [JCAIO7]

l ]
et e

No-learnability using Membership queries [ Constraint Acquisition, AlJ17]




State of the art

ModelSeeker [Beldiceanu and Simonis, CP11°12]
72 A passive learning
7 Based on global constraint catalogue (=1000)

7 Buttom-up search




QUACQ: Quick Acquisition

QUACQ [Bessiere et al. JCAI13]

72 Active learning approach
2 Bidirectional search

But it can be top-down search only if no positive
example

7 Based on partial queries to elucidate the scope

of the constraint to learn




Membership Queries

ask(2,8,4,2,6,5, 1, 6)



7p)
Q0
-
)
>
@/
O
-
-
(©
al

ask(2,8,4,2,6,5,1, 6)=No



Partial Queries

ask(2, 8,4, 2,-,-,-,-)=No



Partial Queries




Partial Queries
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QUACQ: Quick Acquisition

4 QUACQ
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QUACQ: Quick Acquisition
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QUACQ: Quick Acquisition
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QUACQ: Quick Acquisition

Algorithm 1. QUACQ: Acquiring a constraint network
C with partial queries

Cp + @;
while rrue do
if sol(CL,) = @ then return “collapse”;

choose e in DX accepted by Cf, and rejected by B:;
if e = nil then return “convergence on C'1.”;
if ASK(e) =yesthen B+ B\ kg(e);
else

L ¢ < FindC(e,FindScope(e, @, X, false));

o R N N AW N -

if ¢ = nil then return “collapse”;
else O, «+— Cp U {C};

[
=]




Complexity of QUACQ

The number of queries required to find the E-
target concept is In:

O(|Cr| - (log | X] + [T'])) ‘l’

The number of queries required to converge is

O(B]) T

E+



Some Results

Sudoku
A target network on 81 variables with 810 constraints

Bias of 19440 binary constraints

CLl  #a  #q g time

Sudoku 9 x 9 (810 8645 ) 821 20.58 0.16

Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



Experiments

Zebra puzzle
2 QUACQ behavior on different bias sizes
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Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



QUACQ: new constraint acquisition approach based on partial
gueries

7

e
.
7

Active learning approach

Learning a constraint in a log scale of #queries

Queries are often much shorter than membership ones

Can follow a top-down search to learn a constraint network

Time left?



.

Constraint Acquisition

Nadjib Lazaar

%@

U. Montpellier, France

LIRMM - COCONUT team
wiw  QILIRMM

Jussieu




In practice?

/
Limitation:
* Hard to put in practice:
e QUACQ needs more than 8000 queries to learn the Sudoku model

(Need:

* Reduce the dialogue with the user to make constraint acquisition more
efficient in practice

(How:

* Eliciting more information on why a complete instantiation is classified as
negative by the user




QUACQ: Quick Acquisition
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MULTIACQ: Multiple Acquisition [IJCAI-Wa15]
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MULTIACQ: Multiple Acquisition

Q: Why the user said No?

D

[Bessiere et al., JCAI13]

* FindScope function
* QuickXplain like function [Junker 04]
e Returns one scope (explanation)

=>» FindScope(e)=(X3,x5)

=>» #learned_constraint = 1

J

e: Membership query

* FindAllScopes function

» CAMUS like function [Liffiton et al. 07]

e Returns all Minimal No Scopes (MUS
in SAT)

=>» FindAllScope(e)={(X1,x3), (X1,x4),
(X3,x5), (X5,x6), (X5,x8),(X4,x8)}
=>» #learned_constraint = 6



MNS: Minimal No Scope

Given a negative example e, an MINS is a subset of variables
U C X such that:

ASK(ey) =no and Vx; € U : ASK (ep\5,) = yes

Lemmas: ASK(

Y | )=NO

f LEMMA 2
Ask( | Y | )=wis

) LEMMA 1
AsK( | Y | )=VEs




FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 1 1

[ X1 X2 X3 X4 ]




FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 2 2

[ X1 X2 X3 X4 ]

| X1 X2 X3 l




FindAllScopes function
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FindAllScopes function
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X1



FindAllScopes function
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 6 6
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 7 6

[ X1 X2 X3 X4 ]

[Xl](XZ] [XlJLEMMAl




FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 8 7

[ X1 X2 X3 X4 ]
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FindAllScopes function
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FindAllScopes function
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FindAllScopes function
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 13 10

[ X1 X2 X3 X4 ]
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 15 10

[X1x2x3x4]
b*[xzm][X1X2J[x1x4][xzx4][;g] LEMMA 2
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
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[ X1 X2 X3 X4 ]
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FindAllScopes function
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FindAllScopes function
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 21 12

[ X1 X2 X3 X4 ]
|X1X2X3l |X1X2X4\ |X1X3X4\ [X2X3X4J
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FindAllScopes function

INPUT: example e on (X1, X2, X3, X4) variables #Recusive calls #ask
OUTPUT: MNS = (X1, X2), (X1, X3), (X2, X3, X4) 21 12

[ X1 X2 X3 X4 ]
|X1X2X3l |X1X2X4\ |X1X3X4l

b*[xm][X1XZJ[X1X4][XZX4][X1X3J[X1X4J[X3X4][XZX3J xaxs

G0 () L

is an MINS!




Some Results

Sudoku
A target network on 81 variables with 810 constraints

Bias of 19440 binary constraints

CLl  #4  #qc g time
Sudoku 9x9 810 8645 821 2058 0.16

MultiAcq =» 3821 (gain 60%)

Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



QUACQ focuses on the scope of one constraint each time we give it
a negative example

MULTIACQ with its FindAllScopes function aims to report all minimal
scopes of violated constraints

The results show:

72 MULTIACQ dramatically improves the basic version of QUACQ in terms
of #queries

? The queries are often much shorter
MULTIACQ can be time-consuming

N

Still time left?
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In practice?

/
Limitation:
* Hard to put in practice:
e QUACQ needs more than 8000 queries to learn the Sudoku model

/
-
Need:
* Reduce the dialogue with the user to make constraint acquisition more
efficient in practice )
How:

e Eliciting more information on why a complete instantiation is classified as
negative by the user = MULTIACQ [IJCAI16]
* Eliciting more information by asking complex queries to the user [ECAI14]

J




Variables and Types

71 Atype is a subset of variables defined by the user as having a
common property

71 Example (School Timetabling Problem)

4 )
Teachern Courses
- 4

variables



Variables and Types

71 Atype is a subset of variables defined by the user as having a
common property

71 Example (School Timetabling Problem)
4 )

Courses

Teachers

R, 0,

constraint

Can C1 be generalized to all Teachers, Rooms and Courses?



Generalization Query

Let c(z,y) alearned constraint and X, Y are types of z,¥ :
7# Generalization Query: AskGen((X,Y), c)

The user says yes iff the constraint ¢ holds on all possible scope
(zi,yi) € (X,Y)

Properties

super-types

types

X =2 < = X
< 2l < = <

Sub-types




Generalization Query

Let c(z,y) alearned constraint and X, Y are types of z,¥ :
7# Generalization Query: AskGen((X,Y), c)

The user says yes iff the constraint ¢ holds on all possible scope
(zi,yi) € (X,Y)

Properties

AskGen( ,€)=YES

X P2l < = X
<2< =<

AskGen(

,€)=YES




Generalization Query

Let c(z,y) alearned constraint and X, Y are types of z,¥ :
7# Generalization Query: AskGen((X,Y), c)

The user says yes iff the constraint ¢ holds on all possible scope
(zi,yi) € (X,Y)

Properties

AskGen( ,€)=NO

AskGen( ,€)=NO

X P2l < = X
<2< =<




Inputs
2 Alearned constraint
7 Combination of possible types (i.e., table)

Output

2 Set of constraints

/ Zebra Problem
varlables

types

m.s;mm

/




Inputs / INPUTS
* Learned constraint : X, # X

72 Alearned constraint

* Table:
7 Combination of possible types (i.e., table)
#g=0
Output
askGer v

2 Set of constraints

/ Zebra Problem

m.s;mm
BEOB e

7 Y, /




Inputs / INPUTS
* Learned constraint : X, # X

72 Alearned constraint

e Table:
7 Combination of possible types (i.e., table)
Hg=1
Output
| askGen X, color v
2 Set of constraints k
/ Zebra Problem X2 X
color Xg
color color

m.smm o x %
BEOB L

5 Y 7




Inputs / INPUTS
* Learned constraint : X, # X

72 Alearned constraint

* Table:
7 Combination of possible types (i.e., table)
Hg=2
Output
_ X, color
? Set of constraints
/ Zebra Problem] [25kGen %2 X ik
color Xs v
color color

m.smm o x %
BEOB L

5 Y 7




Inputs

7
7

A learned constraint

Combination of possible types (i.e., table)

Output

7

Set of constraints

-

Zebra Problem

m.smm

LLLX

7 /

/ INPUTS
* Learned constraint : X, # X

e Table:

#g=3
X, color
X5 X k
askGen color Xs :«
color color :«
color X *
X Xg
X color




Inputs / INPUTS
* Learned constraint : X, # X

72 Alearned constraint

* Table:
7 Combination of possible types (i.e., table)
Hg=4
Output
_ X, color
? Set of constraints
/ Zebra Problem X2 X
color Xg
askGen color color

m.smm S
BEOB L

7 /

X

S

S
\*‘**‘*1‘1—7‘1




Inputs
2 Alearned constraint
7 Combination of possible types (i.e., table)

Output

2 Set of constraints

/ Zebra Problem

m.smm

LLLX

7 /

/ INPUTS
* Learned constraint : X, # Xg
* Table:
#Hg=5
X, color
X5 X
| __color Xe
color color
e
color X
X Xg
X color
X X




Inputs
2 Alearned constraint
7 Combination of possible types (i.e., table)

Output

2 Set of constraints

/ Zebra Problem

m.smm

/

4

INPUTS

Learned constraint : X, # X

Table

9 constraints :

OUTPUT




QUACQ

G-QUACQ

H# Ask

#Ask H#HAskGen

Zebra

Sudoku

Latin square

RFLAP

Purdey

50%
95%
34%
88%
34%



Generalization query based on types of variables

GENACQ algorithm

Several heuristics and strategies to select the good candidate generalization
query

Can be plugged in any active constraint acquisition system

Results by plugging GENACQ in the QUACQ acquisition System

Next step

Detecting Types of Variables for Generalization [ICTAI15]

Still time left??
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Motivations
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Motivations

%Set of alized
con nts
+ a constraint
EXAMPLE
TypeTl
K- g cove
¢ a
@ | ( Limitation: Hidden types
i 7
. @ ( The need : Detecting types before generalization

l How : Reasoning on and mining the partial constraint graph




Detecting types of variables

Variables of the same type are often tightly connected with
similar constraints

Variables of different types are connected in a weaker way

Detecting sub-graphs arose in the study of networks:
2 Social networks [Wasserman and Faust, 94]

2 Biochemical networks [Ito et al. 01]

=» Detecting community structures (types in our context)



Mine&Ask algorithm
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Mine&Ask algorithm
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Mine&Ask algorithm

/~ Target
Network
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/

Mining step




Mine&Ask algorithm

/ Target \ Generalization step

Network ﬁ-l ‘ ) Crz ‘ N

A=A |\ /AN
R (e

@&—e —— ——
&—e o—o
/Current .\ AskGen(T1,R1)= YES AskGen(T2,R1)= YES

Network

Q @ N\ o7
O_\N@/ 63 @ W{B questions =» 9 constraintsJ

b4
\__ & ‘ / ‘ AskGen(T3,R1)= NO




Mining the graph of learned constraints

* Modularity optimization for communities detection [newman and Girvan, 04]
Communlty 1 Communltyz

Adjacency matrix
community

Q=X |z — | @) =

7

H#edges

A high value of modularity Q correspond to a good partition



Mining the graph of learned constraints

* Modularity optimization for communities detection [newman and Girvan, 04]

* Edge betweenness centrality [Girvan and Newman 02]

(x2) ()
\ /N
#paths through the edge e
P g g ® 7 ® 1 14
! 7 A2
O—@ @

B(e) — Eij %fj) L2 98\ 112
- /3

# shortest paths betweeniand j



Mining the graph of learned constraints

* Modularity optimization for communities detection [newman and Girvan, 04]

* Edge betweenness centrality [Girvan and Newman 02]

* Quasi-cligues detection based on Bron Kerbosch’s algorithm
[Bron and Kerbosch 73]



Experimental evaluation

Mine&Ask is implemented and plugged in QUACQ system,
leading to M-QUACQ version

M-QUACQ is compared to the basic version of QUACQ and the
G-QUACQ version including GENACQ Algorithm.

We evaluate the three different extracting types methods:
72 Modularity

7 Betweenness

A 7Y-clique



Some Results

QUACQ G-QUACQ M-QUACQ
Strategies HAsk |#Ask #AskGen|# Ask #AskGen #no #yes
Latin Square

modularity 087 61 | 26 35
betweenness|| 2058 | [129 68 | [ 1674 22 5 17 50%

v-clique 1172 35 1 34

PlaceNumPuzzle

modularity 627 35 4 31
betweenness|| 3746 | (351 39 | | 655 33 2 31 82%

v-clique 688 33 2 31

Murder

modularity [ 272 12 | 2 10
betweenness| 483 | (230 55 | [(272 12 ) 2 10 41%

v—-clique 342 13 3 10




Some Results

QUACQ G-QUACQ M-QUACQ
Strategies HAsk |#Ask #AskGen|# Ask #AskGen #no #yes
Zebra
modularity 410 14 0 14
betweenness|| 694 || (257 67 | [[410 14 0 14 40%
v=clique 410 14 0 14
Purdey
modularity (140 8 ) 0 8
betweenness|| 205 || [ 93 39 | []T140 8 0 8 27%
v=clique (140 8 0 8
Sudoku
modularity 7963 5T | 20 37
betweenness| 9593] | (260 166 | [ 8960 50 18 32 16%
v-clique 9461 117 104 13




Mine&Ask algorithm able to mine partial graphs of constraints
and to generalize constraints on potential types

Used when no knowledge on variable types is provided

Extracting potential types using:

72 Modularity, betweeness,Y-clique

M-QUACQ = Mine&Ask + QUACQ
= Next?

More prediction and mining on partial constraint network for
acquisition [IJCAI16]

Study on a time-bounded query generation [Ongoing work]
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